
Alternating interaction fusion of Image-Point cloud for Multi-Modal 3D 
object detection

Guofa Li a, Haifeng Lu b, Jie Li a,*, Zhenning Li c, Qingkun Li d, Xiangyun Ren e, Ling Zheng a

a College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China
b Institute of Human Factors and Ergonomics, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
c State Key Laboratory of Internet of Things for Smart City, University of Macau, Macau 999078, China
d Beijing Key Laboratory of Human-Computer Interaction, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
e State Key Laboratory of Intelligent Vehicle Safety Technology, Chongqing Changan Automobile Co., Ltd, Chongqing 400023, China

A R T I C L E  I N F O

Keywords:
3D object detection
Camera-LiDAR fusion
Autonomous Vehicles

A B S T R A C T

A mainstream feature fusion method involves enhancing Lidar point cloud information by incorporating camera, 
but it fails to fully utilize the rich information in images. Another method uses a dual-channel parallel approach 
to fuse image and point cloud information, but it also faces issues such as excessive module stacking and high 
computational demands. Therefore, we propose a powerful alternating interaction fusion approach. Firstly, it 
resolves the problem of unilateral fusion schemes that overly rely on point cloud information and fail to fully 
utilize image data. Secondly, it tackles the problem of excessive module stacking and high computational de
mands in dual-channel parallel fusion schemes of point cloud and image data. Specifically, our alternate inter
active fusion module implements a method where image and point cloud BEV features mutually enhance each 
other. Local attention interactions are engaged between image features containing point cloud information and 
regular image features. This enhances the expressiveness of image features. Subsequently, internal BEV attention 
interactions occur between point cloud BEV features with enriched image information and regular point cloud 
BEV features. This step improves the expressiveness of the point cloud BEV features. Experiments on the large- 
scale nuScenes dataset demonstrate that our proposed method outperforms both the unilateral point cloud- 
centric fusion and the parallel interactive fusion approaches.

1. Introduction

3D object detection is pivotal for autonomous driving, achieving 
automation by locating and recognizing objects in the real world. LiDAR 
and cameras serve as complementary sensors for 3D object detection. 
LiDAR provides high-precision spatial information with excellent reso
lution of object shapes and edges [1], while camera images contain 
color, texture, and other features crucial for object identification and 
scene comprehension [2]. Different forms of data offer complementary 
knowledge to achieve cross-modal information fusion, thereby 
enhancing the detection performance [3,4].

Currently, the methods for fusing LiDAR and camera data generally 
follow three approaches [5–7]. The first approach is input-level fusion 
based on mapping alignment, with PointPainting being a representative 
method. This method directly incorporates image features into LiDAR 
point clouds before the features enter the network, leading to the 

premature loss of important image feature information. Specifically, due 
to the difference in sparsity between image pixels and point clouds, most 
pixel feature points cannot be effectively mapped to the sparse point 
cloud points, resulting in the underutilization of rich image feature in
formation. Additionally, due to the heterogeneity of features, images 
provide dense semantic information, while point clouds offer sparse 3D 
spatial information. Directly attaching image features to point clouds 
fails to fully leverage the semantic advantages of image features.

The second is feature-level fusion based on mapping alignment, with 
MV3D [9] and BEVFusion [10] as typical methods. The intrinsic fusion 
challenges are similar to those of input-level fusion, mainly involving 
reliance on precise calibration, modality heterogeneity, and alignment 
errors [11]. Firstly, the feature alignment relies heavily on calibrated 
feature mapping, making it highly susceptible to calibration errors. 
Secondly, due to the heterogeneity of the features, aligning sparse 3D 
point clouds with dense 2D image features is a significant challenge. 
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Particularly during hard-association, the sparsity of LiDAR point clouds 
may result in the inability to fully utilize the rich contextual information 
provided by camera images, causing the fused features to lose critical 
details.

The third is fusion based on attention mechanisms, using the self- 
attention and cross-attention mechanisms of transformer to adaptively 
fuse data or features between the two modalities [12]. This soft- 
association mechanism can address many issues present in mapping 
alignment, such as calibration errors, but it also has its inherent limi
tations. FUTR3D [25] and TransFusion [13] are representative methods. 
FUTR3D [25] directly interacts with image and point cloud features in 
the 3D object query box without fusing the features of both modalities. 
While this simplifies the fusion process, it lacks dedicated modules to 
achieve modality fusion at the feature level, making it difficult to fully 
utilize the complementary information from both images and point 
clouds. As LiDAR-based fusion methods have consistently shown better 
detection results, unilateral fusion strategies like TransFusion [13] and 
DeepFusion [14] continue to adopt this approach, aiming to fully utilize 
LiDAR’s advantages in spatial perception and distance measurement. 
However, this unilateral fusion strategy overly relies on LiDAR, with 
image features only added as auxiliary information, failing to fully 
exploit the advantages of images in semantic understanding. The fine- 
grained semantic information from images, like color and texture, is 
underutilized in the fusion process. This can cause inaccuracies in 
detection, especially in complex scenes where LiDAR’s geometric data 
alone is not enough. Therefore, the potential of image features is not 
fully realized, negatively affecting the overall fusion performance.

DeepInteraction [15] proposes a parallel interaction method to fuse 
features while preserving the independence of the two modalities, 
interacting their features in the process. However, it also faces high 
computational demands and module stacking issues due to parallel and 
cascading prediction.

To address these shortcomings in fusion methods, this paper pro
poses an improved strategy of alternating interaction. Our key idea is to 
first enhance the features of one modality and then use these enhanced 
features to further improve those of the other modality. There are two 
conceptual approaches. One is to enhance image features first and then 
point cloud BEV features. The other is to enhance point cloud BEV 
features first and then image features. These approaches maintain the 
independence of the two types of features while leveraging their 
complementarity, thus improving feature expressiveness.

Specifically, we fuse the two modalities in an alternating interactive 
manner. Compared with the issue of insufficient interaction in unilateral 
fusion dominated by point clouds, this method initially focuses on im
ages, fully utilizing image information. Compared with the computa
tional burden of parallel fusion, this method enhances point cloud BEV 
features on the basis of the initially enhanced image features. The two 
stages interact in a cascading manner. This interaction extracts deeper 
features of the two modalities while using the same amount of interac
tion modules. It also reduces transformer interaction modules by half at 
the same module depth. This reduction contributes to the reduction of 
computational costs.

In summary, our contributions are twofold. Firstly, we explore the 
intrinsic challenges of LiDAR-camera fusion, highlighting the issues of 
insufficient utilization of image information and module stacking in 
multimodal fusion, which are the drawbacks of unilateral and parallel 
fusion mechanisms, respectively. Secondly, we propose a 3D object 
detection fusion model based on Transformer cross-attention, which 
alternately interacts and fuses features from the two modalities. Spe
cifically, this method adopts a sequential fusion strategy, first opti
mizing image features and then optimizing point cloud features, thereby 
enhancing the expressiveness of the fused features while reducing the 
stacking of attention modules and lowering computational costs. 
Compared to the baseline method, our approach improves accuracy by 
+ 1.91 % mAP and + 1.07 % NDS, while increasing inference speed from 
2.99 FPS to 4.12 FPS.

The remainder of this paper is organized as follows: we review the 
related literature in Section 2, and introduce the proposed alternating 
interaction method in Section 3; experimental analysis and conclusions 
are presented in Section 4 and Section 5, respectively.

2. Related work

2.1. Camera-based 3D object detection methods

Due to the high cost of LiDAR sensors, researchers have devoted 
considerable effort to pure camera-based 3D perception. Previous 
methods mostly rely on single-view depth estimation [16], predicting 
image depth directly based on image features [17–19] or using inter
mediate feature representations [20,21] to estimate the 3D positions of 
objects. Multi-scale object detection based on disparity segmentation 
reduces redundant information transmission across scales [22]. For 
multi-view inputs, one approach leverages 3D space as an intermediary, 
with the assistance of a depth prediction network, LSS [23], to explicitly 
estimate the depth information of images, then transforms these 3D 
features from voxel space to BEV (Bird’s Eye View) space, culminating in 
the construction of BEV features. However, the accuracy of predicted 
depth maps is significantly lower than that of LiDAR. This introduces 
semantic ambiguity into the BEV space. Another approach attempts to 
implicitly capture spatial or temporal information from multi-view im
ages [24]. Typically, this method creates 3D object entities under BEV 
features and optimizes these entities using BEV features [25,26]. How
ever, this method deprives 3D object entities of the opportunity to 
interact directly with the feature space. Additionally, camera-based 
methods are also susceptible to changes in lighting conditions and 
may perform poorly in low-light situations.

2.2. Lidar-based 3D object detection methods

Due to the unordered and irregular nature of point clouds, many 3D 
object detection methods handle them in a specific way. Firstly, point 
clouds are projected onto regular grids, such as 3D voxels [27,28], pil
lars [29], or range images [30]. Secondly, standard 2D or 3D convolu
tions are applied to compute features on the BEV plane. This process 
generates 3D boxes with different representations. Outdoor scene 3D 
detection models mostly utilize transformers for feature extraction 
[31,32]. However, the attention operation of each transformer layer has 
a computational complexity of O(N2) for N points, which is computa
tionally intensive. Therefore, various methods [33,34] have been pro
posed to accelerate computation by applying Transformers to point 
cloud feature extraction. Meanwhile, schemes that use Transformer 
decoders or their variants as their detection heads [35] are increasingly 
adopted by researchers. 3DETR [36] employs a full Transformer decoder 
architecture with fewer design priors, simplifying the detection process 
and effectively eliminating the need for many manually designed com
ponents (e.g., NMS or anchor generation). However, point cloud-based 
methods have several drawbacks. These include susceptibility to 
weather conditions, complex data processing, and limited resolution.

2.3. Fusion based 3D object detection methods

In recent years, multi-sensor fusion technology has gained increasing 
attention in the field of 3D detection. Many autonomous vehicles with 
3D object detection functions are typically equipped with LiDAR and 
multiple surround-view cameras. The existing 3D detection methods 
typically perform multi-modal fusion at one of three stages: input-level 
fusion, feature-level fusion and attention mechanisms fusion.

Input-level fusion methods mainly involve mapping image semantic 
features onto foreground LiDAR points and performing LiDAR-based 
detection on the augmented point cloud inputs. PointPainting [8] and 
PointAugmenting [37] are representative methods of input fusion. 
PointPainting [8] and Painted-PointRCNN [11] enhance point cloud 
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data by associating each LiDAR point with corresponding image se
mantic labels generated by an image segmentation network. PointAug
menting [37] further improves this method by using pointwise CNN 
features extracted from a pre-trained 2D detection model to augment the 
point cloud. This approach significantly improves detection perfor
mance. The CNN features of the detection network are better adapted to 
the appearance variations of the targets compared with the highly ab
stract semantic segmentation scores used in PointPainting [8]. Besides, 
SFEMOS combines both moving object segmentation and scene flow 
estimation tasks and leverages geometric constraints to enhance their 
performance [38].

Feature-level fusion methods, which can also be applied in LiDAR- 
map feature matching [39], usually conduct multi-modal feature 
fusion at the backbone, candidate box generation or ROI refinement 
stages. These methods extract features from both image and LiDAR 
backbone networks and fuse them either at the proposal generation or 
ROI head stage. MV3D [9] and AVOD [40] are basic approaches in this 
domain. Alternatively, some approaches initiate by generating 3D object 
proposal boxes, then project these boxes onto image views and bird’s- 
eye views to extract features and optimize the target boxes.

Attention mechanism-based fusion methods use Transformer de
coders for multi-modal feature fusion [41–43]. FUTR3D [25] and 
TransFusion [13] define object queries in 3D space and integrate image 
features into these target boxes. Due to the advantages of point clouds in 
distance and spatial perception, these methods adopt a unilateral fusion 
strategy that is biased towards the 3D LiDAR modality, but this exces
sively neglects the role of images in fusion, failing to exploit the 
complementarity of multi-modal fusion. Concurrent methods like 
DeepInteraction [15] explores the drawbacks of such unilateral fusion 
strategies, proposing interacting features of the two modalities while 
preserving their unique feature representations. However, running both 
channels in parallel also leads to bulky modules and high computational 
costs. Fig. 1 shows the simplified structure of the feature fusion modules 
for unilateral fusion and parallel fusion.

The methods mentioned above either excessively neglect the role of 
images in the fusion process or suffer from module stacking and high 
computational consumption. In this study, we address these problems 
using a novel multi-modal interaction strategy. The key insight of our 
method is to alternately interact between modalities, fully exploring and 
utilizing image information while maintaining modal independence. 
This approach compensates for the shortcomings of a unilateral fusion 
strategy biased towards the 3D LiDAR modality, while keeping the 
modules streamlined to avoid unnecessary computational burden due to 
excessive stacking of modalities.

3. Method

In this section, we propose an Alternating Interaction Method (AIM) 
for 3D object detection using LiDAR and camera, with the overall 
structure of the model shown in Fig. 2. The AIM consists of two modules: 
Image Feature Enhancement Module (IFEM) and LiDAR Feature 
Enhancement Module (LFEM). Both modules include a cross-modal 
feature mapping and sampling module to achieve feature alignment, 
as well as a feature interaction module based on attention mechanisms 

Fig. 1. The left subfigure is a unilateral fusion feature extraction module that 
primarily utilizes the point cloud channel, and the right subfigure is a parallel 
fusion module conducting feature optimization simultaneously through the 
point cloud and image channels.

Fig. 2. Overall structure diagram of the proposed alternating interaction method. The 3D backbone and 2D backbone are utilized separately for feature extraction 
from LiDAR and images. Then, image and point cloud features are optimized through Image Feature Enhancement Module and LiDAR Feature Enhancement Module, 
respectively. Finally, the decoder outputs the result of multi-modal feature fusion.
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to perform cross-modal feature interaction and enhancement.

3.1. Cross-modal correspondence mapping and sampling

To facilitate the interaction between modalities while maintaining 
the independence of each modality, it is essential to establish a mapping 
relationship between image features hc and point cloud BEV features hp. 
We refer to the modality alignment method applied in DeepInteraction 
[15], which forms the decorated image features hć  and decorated point 
cloud BEV features hṕ  through mapping and sampling, thus establishing 
a correspondence between the two modalities.

The mapping and sampling process in the Image Feature Enhance
ment Module (IFEM) is as follows, as illustrated in Fig. 3(a). First, each 
3D point P(x, y, z) in space is projected onto multiple views to form a 
sparse depth map. Then, a dense depth map is generated through 
bilinear interpolation, which is subsequently back-projected into 3D 
space to form a pseudo point cloud. By using the horizontal coordinates 
of this pseudo point cloud, the corresponding point cloud BEV features 
Pb(xp, yp) can be sampled, thereby generating the decorated image 
features hć . At this stage, the decorated image features hć  have the same 
dimensions as the original image features hc, and both the original 
image features hc and the decorated image features hć  carry respective 
information from the image and the point cloud.

The mapping and sampling process in the LiDAR Feature Enhance

ment Module (LFEM) is as follows, as depicted in Fig. 4(a). Similar to hć , 
each 3D point P(x, y, z) in the point cloud is projected onto multiple 
views. Valid points that can be projected onto these views are selected, 
and the features at the projection positions in the multi-view images are 
sampled to form sampling results in voxel units. Non-empty voxels are 
retained as the decorated point cloud BEV features hṕ . At this stage, the 
point cloud BEV features hp and the decorated point cloud BEV features 
hṕ  are matched in voxel dimensions, with hp and hṕ  carrying respective 
feature information from the point cloud and the image.

The transformation formula for converting the point cloud from 
LiDAR coordinates to camera coordinates, mapping to image co
ordinates, and then discretizing to pixel coordinates is as follows: 
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where K represents the camera’s intrinsic parameter matrix, and H is the 

Fig. 3. Image Feature Enhancement Module (IFEM). (a) The process of constructing decorated image features hć  through mapping and sampling. (b) The process of 
local cross-attention interaction between image features hc and decorated image features hć .

Fig. 4. LiDAR Feature Enhancement Module (LFEM). (a) The process of constructing decorated point cloud BEV features hpʹ through mapping and sampling. (b) The 
process of voxel cross-attention interaction between point cloud BEV features hp and decorated point cloud BEV features hṕ .

G. Li et al.                                                                                                                                                                                                                                        Advanced Engineering Informatics 65 (2025) 103370 

4 



transformation matrix from LiDAR to camera.
The sampling value of the LiDAR point P on the image feature map 

F(P) can be obtained by bilinear interpolation of the values of the four 
surrounding pixel points. Similarly, the sampling value on the BEV 
feature map for the image pixel point (u, v) can also be obtained by 
bilinear interpolation of the values of the four surrounding BEV grids.

The sampling process is as follows. Given the input feature map F, 
the corresponding sampling value F(P) for the sampling point P on the 
feature map F can be calculated using the following bilinear interpola
tion formula: 

F(P) = αβF(Q22) + α(1 − β)F(Q21) + (1 − α)βF(Q12)

+ (1 − α)(1 − β)F(Q11) (4) 

where Q11, Q12, Q21, Q22 represent the four nearest neighbor pixel/BEV 
grid points around the sampling point P on the feature map F. Besides, α 
and β are the ratios of the distance of point P to its left (or above) to the 
distance of the adjacent grid in the x and y directions, respectively. 
F(Q22), F(Q21), F(Q12), and F(Q11) separately represent the values of 
these four adjacent pixels on the feature map.

3.2. Attention-based feature interaction

Based on the cross-modal feature sampling and mapping relationship 
between the image features hc and point cloud BEV features hp, we 
design an attention-based feature interaction module to fully utilize 
image information. This approach addresses the drawbacks of unilateral 
fusion and reduces the issue of module stacking.

First, we introduce an image feature enhancement module, as illus
trated in Fig. 3(b), which uses the decorated image features hć  to 
enhance the image features hc. The original features hc interact with the 
sampled features hć  through local cross-attention, treating hc as the 
query and hć  as both the key and value. Each feature point of hc queries 
the corresponding feature point within the local window of hć , and after 
this interaction, the image features hc incorporate point cloud infor
mation, resulting in the enhanced image features hce. The formula is as 
follows: 

f(hc , hć ) = softmax
(

qckp
̅̅̅
d

√

)

vp (5) 

where qc represents the query from the image features hc, and kp, vp 
represent key and value from the sampled point cloud BEV features from 
hć .

Then, we present a point cloud BEV feature enhancement module, as 
illustrated in Fig. 4(b): a module that uses the enhanced image features 
hce to inversely enhance the point cloud BEV features hp. We perform 
sampling on the enhanced multi-view image features hce to obtain the 
augmented point cloud BEV features hṕ , where hp represents the point 
cloud BEV features, and hṕ  represents the feature sampling points of 
point cloud points within each voxel across different views. Using hp as 
the query and hṕ  as both the key and value, local attention interactions 
are conducted within the corresponding BEV. After the interaction, the 
point cloud BEV features hp incorporate the enhanced image informa
tion, resulting in the enhanced point cloud BEV features hpe, which 
further improve the feature expressiveness. The formula is as follows: 

f
(
hp, hṕ

)
= softmax

(
qpkc

̅̅̅
d

√

)

vc (6) 

where qp represents the query from point cloud BEV features, and kc, vc 
represent key and value from the sampled enhanced image features hṕ .

These two modules are concatenated in a cascading manner to form 
an alternating interaction method. The input to a single module is the 
original image features hc and the original point cloud BEV features hp, 
with the output being the enhanced image features hc and point cloud 

BEV features hp. Compared with the parallel interaction encoders of 
DeepInteraction [15], the alternating interaction method can simplify 
half of the transformer modules under the same stack depth, making the 
feature fusion network structure more concise and lightweight.

3.3. Decoder

We use a DETR-type decoder. First, we initialize a series of bounding 
boxes, then generate object queries through an embedding layer. These 
queries pass through multiple Transformer layers composed of self- 
attention, cross-attention, and feed-forward neural network layers. 
Finally, we detect the targets using a series of detection heads.

The decoder’s self-attention, cross-attention, and feed-forward layers 
are described by formulas. The calculation for self-attention layer is as 
follows: 

QS = KS = VS = Q+Qpos (7) 

Qʹ = LayerNorm(Q + Dropout
(

softmax
(

QSKT
S̅̅̅

d
√

)

VS

)

(8) 

where Q and Qpos are derived from the initialized bounding boxes. The 
formula for cross-attention layer is as follows: 

QC = Qʹ+Qpos (9) 

KC = VC = K+Kpos (10) 

Qʹ́ = LayerNorm
(

Qʹ+Dropout
(

softmax
(

QCKT
C̅̅̅

d
√

)

VC

))

(11) 

where K and Kpos come from the point cloud and image enhancement 
features output by the encoder. The formula for feed-forward layer is as 
follows: 

FFN(Qʹ́) = Linear2(Dropout(Activation(Linear1(Qʹ́)))) (12) 

Qfinal = LayerNorm(Q́ʹ+ Dropout(FFN(Qʹ́))) (13) 

3.4. Loss function

We adopt multi-task loss function. Overall, the total loss can be 
formulated as: 

L = Lreg + Lcls + Liou + Lheatmap (14) 

Specifically, we firstly parameterize the 3D ground-truth box as (xg, 
yg, zg, lg, wg, hg, θg, vg), where (xg, yg, zg) denotes the center coordinate of 
bounding box in 3D space, (lg, wg, hg) defines the size of bounding box, θg 

is the yaw rotation along the z-axis, and vg is the velocity of bounding 
box. Correspondingly, the 3D prior box can be described as (xa, ya, za, la, 
wa, ha, θa, va). We utilize L1 function to calculate regression loss Lreg for 
positive predictions Npos, and the expression is described as: 

Lreg =
1

Npos

∑

i
SmoothL1(Δr) (15) 

where Δr is the absolute value of the difference between (xg, yg, zg, lg, wg, 
hg, θg, vg) and (xa, ya, za, la, wa, ha, θa, va).

For classification loss Lcls, we adopt focal loss to alleviate the 
foreground-background imbalance problem. The formula is as follows: 

Lcls =
1

Npos

∑

i
− α(1 − pi)

γ log(pi) (16) 

where pi denotes the confidence score for the i-th box, α = 0.25 and γ =

2 are hyperparameters.
Liou is calculated as follows: 
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Liou =
1

Npos

∑

i
− Igt (17) 

where Igt denotes the target IoU that is computed between a positive 
prediction and the ground-truth box.

As for Lheatmap, GaussianFocalLoss, borrowed from our baseline 
method DeepInteraction [15], is used to measure the difference between 
the predicted heatmap (predheatmap) and the ground truth heatmap 
(gtheatmap) generated based on a Gaussian distribution. The formula is as 
follows: 

Lheatmap = GaussianFocalLoss(predheatmap, gtheatmap) (18) 

4. Experiments and results

4.1. Experimental setup

1) Dataset.
The nuScenes dataset [44] is a large dataset designed for autono

mous driving research and development, supporting tasks such as 3D 
object detection, tracking, and prediction. This dataset consists of three 
parts: the training set, validation set, and test set, containing data from 
700, 150, and 150 different scenes, respectively. Each frame includes a 
point cloud and six calibrated images covering a 360-degree horizontal 
field of view, along with annotations for vehicles, pedestrians, and other 
dynamic objects. The data originates from a 20 Hz 32-beam LiDAR and 
six 12 Hz cameras with a 360-degree field of view. In terms of image 
data, the images from the 6 surround-view cameras are resized to 
800*448 before being input into the network.

2) Evaluation metrics.
When evaluating model performance, the nuScenes dataset employs 

multiple metrics, including mean Average Precision (mAP) and the 
nuScenes detection score (NDS). The mAP is calculated based on the 
distance of the BEV center at various distance thresholds, using the 
average results under 0.5 m, 1 m, 2 m, and 4 m thresholds across ten 
categories. Moreover, the NDS comprehensively considers mAP along 
with other attribute metrics such as translation, scale, orientation and 
velocity. These evaluation metrics aim to thoroughly assess the model’s 
performance in 3D object detection and tracking tasks.

4.2. Implementation details

Our implementation is based on the open-source framework 
mmdetection3d. For the backbone network of the image branch, we 
employed ResNet-50 [45]. The parameters of ResNet-50 [45] were 
initialized from the instance segmentation model Cascade Mask R-CNN 
[46] and nuImage [44], both pretrained on the COCO dataset [47]. To 
reduce computational costs, we halved the input image size from its 
original dimensions and froze the weights of the image branch during 
training, consistent with the method described in Deepinteraction [15]. 
For the point cloud branch’s backbone network, we used Second [27] to 
further process and extract point cloud features. The voxel size was set to 
(0.075 m, 0.075 m, 0.2 m), with the detection range for the X and Y axes 
set to [-54 m, 54 m] and for the Z axis set to [-5m, 3 m].

In terms of data augmentation, we performed translations across all 
three axes with a standard deviation of [0.5, 0.5, 0.5], scaled the point 
clouds horizontally and vertically with a ratio of [0.9, 1.1], and applied 
random rotations within the range of [− π/4, π/4]. The settings of the 
above hyperparameters refer to DeepInteraction [15]. The data also 
underwent random 3D flips in horizontal and vertical directions with a 
probability of 0.5. We adopted the CBGS [48] class-balanced sampling 
strategy to generate more balanced training data. For the optimizer 
configuration, we used the AdamW optimizer with a learning rate of 
0.0001 and a weight decay coefficient of 0.01 (lr = 0.0001, 
weight decay = 0.01). The gradient clipping strategy was set with 
max norm = 0.1, norm type = 2. The learning rate adjustment strategy 

followed a single cycle policy with a change ratio of (10, 0.0001), and 
the momentum adjustment strategy also followed a single cycle policy 
with a change ratio of (0.895, 1). The model was trained on two NVIDIA 
3090 GPUs for 6 epochs with a batch size of 2.

4.3. Comparison to the state of the art methods

As shown in Table 1, our model achieved highly competitive results 
on the nuScenes detection benchmark. Without utilizing any Test Time 
Augmentation (TTA) or model ensemble strategies, our alternating 
interaction method, leveraging just a simple ResNet-50 [45] image 
backbone, surpassed many existing advanced algorithms. Compared 
with TransFusion [13], where both models used ResNet-50 [45], our 
approach achieved a performance improvement of (+1.43 % mAP, 
+0.89 % NDS). We attribute this performance gain to our fusion stage, 
which, by alternating interactions, not only preserved the independence 
of image features but also enhanced the features of both modalities and 
fully utilized image information, thereby improving feature expres
siveness. In contrast, TransFusion [13], with its LiDAR-centric and 
image-auxiliary detection model, could not fully exploit image infor
mation, thus capping the model’s performance potential. Compared 
with PointAugmenting [37], another multimodal model that primarily 
focuses on point cloud information with image information as auxiliary, 
our method also achieved significant performance gains (+2.13 % mAP, 
+1.19 % NDS). Compared with DeepInteraction [15], which optimizes 
feature representation through parallel interaction and employs the 
same image backbone ResNet-50 [45] and point cloud backbone Second 
[27], our method also saw notable improvements (+1.91 % mAP, +1.07 
% NDS). We attribute this enhancement to our alternating interaction 
method eliminating the redundant parts of parallel interaction modules, 
removing hard-to-train distracting features, and making the retained 

Table 1 
Comparison with state-of-the-art methods on the nuScenes val set. ’L’ and ’C’ 
represent LiDAR and camera, respectively.

Method Modality Backbones Validation

​ ​ Image LiDAR mAP 
(%)

NDS 
(%)

BEVDet4D [49] C Swin- 
Base

− 42.1 54.5

BEVFormer [60] C V99 − 48.1 56.9
PolarFormer [50] C V99 − 50.0 56.2
Ego3RT [51] C V99 − 47.8 53.4
PointPillar [29] L − − 40.1 55.0
SECOND [27] L − − 50.85 61.96
CBGS [48] L − − 52.8 63.3
CenterPoint [52] L − VoxelNet 59.6 66.8
Transfusion-L [13] L − VoxelNet 65.1 70.1
Focals Conv [53] L − VoxelNet- 

FocalsConv
61.2 68.1

LargeKernel3D 
[54]

L − VoxelNet- 
LargeKernel3D

63.3 69.1

PointPainting [8] L + C − − 46.4 58.1
3D-CVF [55] L + C − − 52.7 62.3
FUTR3D [25] L + C R101 VoxelNet 64.5 68.3
MVP [56] L + C DLA34 VoxelNet 67.1 70.8
PointAugmenting 

[37]
L + C DLASeg VoxelNet 66.8 71.0

AutoAlignV2 [57] L + C CSPNet VoxelNet 67.1 71.2
FusionPainting 

[58]
L + C − − 68.1 71.6

BEVFusion [59] L + C Swin- 
Tiny

VoxelNet 67.9 71.0

BEVFusion [10] L + C Swin- 
Tiny

VoxelNet 68.5 71.4

SparseFusion [61] L + C Swin- 
Tiny

VoxelNet 68.7 
70.6

70.6

Transfusion [13] L + C R50 VoxelNet 67.5 71.3
DeepInteraction 

[15]
L + C R50 Second 67.0 71.1

Ours L + C R50 Second 68.9 72.2
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modules more capable of feature expression. Furthermore, the practice 
of using optimized image features to subsequently refine point cloud 
features, updating subsequent iterations with the latest features, also 
enables the modules to update more rapidly as a whole, thus exhibiting 
stronger feature performance.

4.4. Time consumption

We calculated the parameter count of each model. In terms of 
parameter count, all three models use the same backbone and neck 
modules, totaling approximately 33 M parameters, and the same 
decoder and head modules, totaling approximately 22 M parameters. 
The model using the parallel fusion encoder [15] has a total parameter 
count of 58 M, with the encoder accounting for 2.7 M. The model 
without any encoder has a total parameter count of 55.3 M. Our method 
optimizes the sequence of modality interactions, reducing the number of 
encoder interaction modules by half compared with the parallel fusion 
encoder method [15], resulting in an encoder parameter count of 1.35 M 
and a total model parameter count of 56.65 M.

Then, we tested the inference speed of each model on a 3090 GPU, 
along with analyzing the computational complexity of the encoder. The 
comparison results of inference speed are shown in Table 2, where the 
comparison methods include the parallel fusion encoder method [15] 
and the method without any encoder. Besides, we also considered the 
inference speed of the unilateral fusion method [13]. Without the 
encoder module, the inference speed reached 6.71 FPS, while the par
allel fusion encoder method only achieved an inference speed of 2.99 
FPS. Our method optimized the inference speed to 4.12 FPS. Considering 
that the computational power applied in our experiments is analogous to 
that of in-vehicle computing hardware, the diminished computational 
cost realized by our research is indeed applicable to practical deploy
ment scenarios.

As mentioned in [27], encoders require extensive processing and 
optimization of features from surround view images and point clouds, 
which occupy a significant portion of the overall latency in multimodal 
3D detectors. Based on our analysis of the encoder structure and model 
parameter count, encoders that compute cross-modal attention based on 
mapping and sampling have complex structures and computational 
operations, involving numerous attention mechanisms and cross-modal 
fusion operations. The computational complexity of attention mecha
nisms grows quadratically with input sequence length, making them 
especially time-consuming for long sequences or large feature maps. 
Although the encoder accounts for a low proportion of parameters, it 
consumes a substantial amount of inference time, which explains the 
reason why the proposed method, despite reducing a small number of 
encoder parameters, achieves a significant improvement in inference 

speed.

4.5. Ablation experiments

To accurately validate the significance of our alternating interaction 
method in multimodal feature fusion, we conducted a comparison be
tween models with and without the alternating interaction encoder, 
keeping other configurations unchanged. Experimental results, as shown 
in Table 3, indicate that using the alternating interaction encoder leads 
to a noticeable improvement (+1.37 % mAP, +0.61 % NDS), demon
strating the effectiveness of the alternating interaction method.

Furthermore, we performed a validation experiment with the 
Lidar2Image encoder to assess the impact of the interaction sequence on 
fusion performance. In our proposed AIM, image features are optimized 
first, followed by point cloud features, while the validation experiment 
reverses the order, optimizing point cloud features first and then image 
features. The results in Table 3 show that exchanging the feature opti
mization order in the Lidar2Image encoder leads to a significant 
degradation in model performance. Compared with the method using 
the alternating interaction encoder, it not only underperforms but also 
fares worse than the method without any alternating interaction 
encoder, indicating that using the Lidar2Image encoder constitutes 
negative optimization, resulting in decreased performance (− 1.18 % 
mAP, − 0.98 % NDS). The primary factor underlying this outcome is 
that, in multimodal fusion between images and LiDAR point clouds, the 
point cloud modality plays a crucial role in determining detection ac
curacy. Therefore, we choose to first perform image feature fusion, up
date the image information, and then incorporate it into the point cloud 
processing. This ensures that the point cloud receives the most updated 
fused state, maximizing the use of rich semantic information captured 
from the image to improve final detection performance. The comparison 
with the parallel interaction encoder is also listed in Table 3, facilitating 
the comparison of various methods.

The bounding boxes detected by various encoder methods are pro
jected onto the images generated by the front-view camera, as shown in 
Fig. 5. Our method performs the best overall performance among the 
four methods. In the yellow box, other methods show significant missed 
detections, while our method successfully detects most targets. The 
method “Using parallel interaction encoder” shows a noticeable height 
discrepancy between the ground truth and predicted boxes, as indicated 
by the yellow arrow. The first two methods within the green box show 
false detections. For detecting small distant targets, point cloud infor
mation is less effective due to its sparsity, so image information is of 
greater importance.

Such findings also confirm that in the fusion of multimodal features 
between images and point clouds, prioritizing point cloud features as the 

Table 2 
Run time comparison. Absent the encoder module, the inference speed attained 6.71 FPS. Conversely, the parallel fusion encoder method only achieved an inference 
speed of 2.99 FPS. Our proposed method successfully optimized the inference speed to 4.12 FPS.

Method mAP mATE mASE mAOE mAVE mAAE NDS FPS(3090)

without using encoder − − − − − − − 6.71
TransFusion-L 65.1 − − − − − 70.1 8.70
TransFusion 67.5 − − − − − 71.3 3.76
DeepInteraction [15] 67.03 0.2712 0.2487 0.2764 0.2535 0.1891 71.12 2.99
Ours 68.93 0.2704 0.2495 0.2794 0.2443 0.1838 72.19 4.12

Table 3 
Ablations on the encoder. A comparison between models with and without the alternating interaction encoder is conducted, keeping other configurations consistent. 
Applying the alternating interaction encoder leads to a noticeable improvement (+1.37 % mAP, +0.61 % NDS).

Method mAP mATE mASE mAOE mAVE mAAE NDS

Without alternating interaction encoder 67.56 0.2706 0.2496 0.2772 0.2373 0.1850 71.58
Using Lidar2Image encoder 66.38 0.2775 0.2521 0.2884 0.2494 0.1916 70.60
Using parallel interaction encoder 67.03 0.2712 0.2487 0.2764 0.2535 0.1891 71.12
Using alternating interaction encoder (Ours) 68.93 0.2704 0.2495 0.2794 0.2443 0.1838 72.19
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main source of information and image features as auxiliary yields better 
results. However, previous approaches such as TransFusion [13] sub
stantially neglected image information, leading to suboptimal fusion 
outcomes. In contrast, the alternating interaction module effectively 
balances the significance of both image and point cloud information, 
enabling the model to better leverage image features for improved 
multimodal feature fusion.

In addition, the proposed method encounters limitations in the pre
ceding feature mapping and sampling stages due to the trade-offs 
inherent in traditional and attention-based alignment methods. While 
local attention reduces computational load, it sacrifices accuracy, and 
global attention, though precise, is computationally intensive. Advanced 
methods, such as deformable attention and polar coordinate-based 
alignment, present promising approaches to balancing cost and accu
racy. Furthermore, the method is susceptible to adverse weather and 
sensor noise, highlighting the necessity for enhancing robustness stra
tegies. To address these issues, multi-sensor integration, data augmen
tation and denoising techniques can enhance performance in 
challenging conditions. Future research will concentrate on refining 
these aspects to optimize multi-modal feature-level fusion.

4.6. Visualization

To understand the actual effect of the feature fusion in the alter
nating interaction fusion module, we first visualize the heatmaps on the 
BEV plane. The ground truth heatmap is generated by drawing a 
Gaussian distribution for each ground truth bounding box. The pre
dicted heatmap is obtained from the point cloud BEV features through 
the heatmap detection head. The similarity between the ground truth 
and predicted heatmaps shows how close the initialized proposal boxes 
are to the ground truth boxes. This also reflects the expressive ability of 
the point cloud BEV features. In the two scenarios shown in Fig. 6, the 
areas circled in yellow do not contain any ground truth targets. When 

comparing the alternating interaction module with the parallel inter
action module, we see clear differences. The parallel interaction module 
makes significant prediction errors in these areas. It assigns a high 
probability of targets in regions without ground truth targets. In 
contrast, the alternating interaction module gives more accurate 

Fig. 5. These four images show the 3D bounding boxes projected onto the images generated by the front-view camera. The red boxes are the ground truth, and the 
blue boxes are the predictions. From top to bottom, the four images represent the methods in Table 3. The methods are “Without alternating interaction encoder”, 
“Using Lidar2Image encoder”, “Using parallel interaction encoder”, and “Using alternating interaction encoder (Ours)”.

Fig. 6. These are the heatmaps for the initialized proposed bounding boxes. 
The first column shows the Gaussian heatmaps of the ground truth boxes, the 
second column shows the predicted heatmaps after feature extraction by the 
alternating interaction method, and the third column shows the predicted 
heatmaps after feature extraction by the parallel interaction model. The first 
and second rows represent two different scenarios.
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heatmap predictions for these areas. It assigns low probability where 
there are no ground truth targets. This demonstrates the effective feature 
fusion and representation capabilities of the alternating interaction 
module.

We also visualize the predicted targets and ground truth targets on 
point cloud maps for both our alternating interaction model and the 
parallel interaction model [15]. Fig. 7 depicts a group of objects at a 
distance, dense and occluded, and another closely clustered group of 
objects adjacent to each other. It can be observed that the parallel 
interaction method fails to detect targets at a distance, especially the 
occluded ones. In such complex scenarios, our method is capable of 
identifying the occluded objects. We attribute this to the more efficient 
utilization of image information by the alternating interaction module. 
At longer ranges, the sparsity of the point cloud reduces the model’s 
detection capabilities, which can be compensated by a full integration of 
image information. Even in situations where adjacent obstacles are 
closely connected, the alternating interaction module achieves better 
detection results. With the aid of more comprehensive visual informa
tion, the model’s instance-level understanding is enhanced. The main 
issue with the detection results of the parallel interaction model pre
sented in Fig. 8 is overlapping detection and inaccurate positioning of 
bounding box. We believe this misidentification is primarily due to the 
ineffective use of visual information, whereas our model can effectively 
optimize this situation.

5. Conclusion

This paper explores the sensor fusion problem between LiDAR and 
cameras for 3D detection in autonomous driving. Point cloud-based 
unilateral fusion methods do not fully use the rich contextual informa
tion in images. Parallel interaction fusion strategies enhance feature 
expressiveness but cause significant computational burden due to 
module stacking. To solve these issues, we propose an alternating 
interaction fusion approach. Firstly, we enhance image feature expres
sion through local cross-attention interactions between image and point 
cloud features. Then, we use the enhanced image features to strengthen 
point cloud BEV features. Our approach avoids the limitations of point 
cloud-centric fusion and the complexity of module stacking in parallel 
fusion schemes. Experiments on the nuScenes dataset validate our 
method’s effectiveness. Results show that our approach combines the 
strengths of LiDAR and cameras, improving 3D detection performance 
and maintaining computational efficiency. This advancement provides a 
new perspective for sensor fusion research in autonomous driving and 
sets the stage for future studies. Future work will focus on optimizing our 
fusion module for real-time perception processing while ensuring ac
curate detection. We also plan to explore the application of this fusion 
strategy in more autonomous driving scenarios and its robustness under 
different environmental conditions.

Fig. 7. Detection results of the parallel interaction method (left) and the alternating interaction method (right) on densely occluded objects. The green bounding 
boxes represent predicted targets, and the purple bounding boxes represent ground truth targets.

Fig. 8. Detection results of the parallel interaction method (left) and the alternating interaction method (right) on large target objects. The green bounding boxes 
represent predicted targets, and the purple bounding boxes represent ground truth targets.
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