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Abstract—In recent times, significant advancements have been
made in delving into the optimization landscape of policy gradi-
ent methods for achieving optimal control in linear time-invariant
(LTI) systems. Compared with state-feedback control, output-
feedback control is more prevalent since the underlying state
of the system may not be fully observed in many practical set-
tings. This article analyzes the optimization landscape inherent to
policy gradient methods when applied to static output feedback
(SOF) control in discrete-time LTI systems subject to quadratic
cost. We begin by establishing crucial properties of the SOF
cost, encompassing coercivity, L-smoothness, and M-Lipschitz
continuous Hessian. Despite the absence of convexity, we leverage
these properties to derive novel findings regarding convergence
(and nearly dimension-free rate) to stationary points for three
policy gradient methods, including the vanilla policy gradient
method, the natural policy gradient method, and the Gauss–
Newton method. Moreover, we provide proof that the vanilla
policy gradient method exhibits linear convergence toward local
minima when initialized near such minima. This article concludes
by presenting numerical examples that validate our theoretical
findings. These results not only characterize the performance of
gradient descent for optimizing the SOF problem but also provide
insights into the effectiveness of general policy gradient methods
within the realm of reinforcement learning.

Index Terms—Policy gradient, reinforcement learning (RL),
static output feedback (SOF).

I. INTRODUCTION

REINFORCEMENT learning (RL) has showcased remark-
able proficiency comparable to human capabilities in a
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variety of challenging tasks, spanning from games to robot
control [1], [2], [3], [4]. RL methods relying on policy gra-
dient, including DDPG [5], SAC [6], and DSAC [7], are
commonly employed to identify parameterized optimal con-
trol policies for tasks with continuous action space. However,
despite these achievements, a complete theoretical grasp of the
complexity and performance of such algorithms remains lack-
ing, even in fundamental scenarios like linear time-invariant
(LTI) systems.

Optimal control problems have served as a potent tool
for exploring various characteristics of RL, including aspects
like stability [8], [9]. Within the framework of policy gra-
dient methods, prior investigations have delved into the
optimization landscape and the attributes of convergence, par-
ticularly within the context of linear quadratic regulator (LQR)
problems [10]. It is widely acknowledged that the optimal
solution of LQR problems can be derived through the solu-
tion of the algebraic Riccati equation (ARE). However, in
the pursuit of unveiling the characteristics of policy gradi-
ent during the training process, the focus shifts toward the
direct optimization of the linear policy using the LQR cost,
rather than solving the corresponding ARE. In this context, it
is noteworthy that the related optimization problem generally
assumes a nonconvex nature since the set of stabilizing state-
feedback gains may lack convexity [11]. An influential work
by Fazel et al. [11] discovered that the discrete-time LQR
objective function exhibits properties of gradient dominance
and almost smoothness, enabling policy gradient methods to
achieve linear global convergence, despite the nonconvexity
of the LQR. Subsequent studies have explored akin attributes,
with specific attention to both discrete-time and continuous-
time LQR [12], [13], [14], [15], as well as various LQR
variations [16], [17], [18], [19], [20], [21].

Compared with state-feedback control, output-feedback
control is more common since the underlying state of the
system may not be fully observed in practical settings [22],
[23], [24], [25]. Most of the existing convergence results of
gradient descent are built on full state feedback, whereas
the convergence for static output feedback (SOF) LQR has
received little attention. As one of the most crucial open topics
in LTI systems, SOF can only acquire some linear combi-
nations of states, rather than entire states [26]. Unlike the
state feedback LQR, the output feedback gain of SOF may
have a disconnected domain, with local minima, saddle points,
or even local maxima in each component [27], [28], [29].
Therefore, finding the globally optimal SOF controller using
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gradient descent is generally intractable. However, it is still of
great significance to investigate the optimization landscape of
SOF, particularly concerning the convergence toward station-
ary points, which will bring new insights into the performance
of policy gradient methods for partially observed control
problems.

Recent efforts have elucidated the optimization landscape
pertaining to continuous-time LTI systems in the context of
SOF, delineating convergence rates to stationary points [27].
However, these findings are limited to the vanilla policy
gradient method, with the convergence behaviors of popu-
lar alternatives like the natural policy gradient [30] and the
Gauss–Newton method [31] yet to be fully clarified. Given
the inherent distinctions between difference equations and dif-
ferential equations, the analysis of optimization landscapes in
discrete-time systems assumes a distinct character. Notably,
discrete-time SOF holds practical significance due to its align-
ment with control frequency limitations, and the utilization of
discrete-time data from real-world systems holds the promise
of extending convergence insights to model-free contexts.

Despite these considerations, the theoretical properties of
policy gradient methods applied to discrete-time SOF sce-
narios have been overlooked in existing studies. This study
takes the initial step toward bridging this gap and offers the
following principal contributions.

1) We unveil several crucial properties of the SOF cost
function, in spite of its nonconvex nature. Notable
among these properties are the compact sublevel set, L-
smoothness, and M-Lipschitz continuous Hessian, which
are instrumental in the subsequent theoretical analyses.
A standout feature of our work is the establishment of
Hessian Lipschitz continuity, a property that provides
critical insights into the path of convergence toward local
minima within SOF problems. This property is typically
overlooked in the extant literature on both SOF and
state-feedback LQR. Diverging from approaches that
establish L-smoothness [19], we prove Hessian Lipschitz
continuity through a direct application of its definition,
thereby avoiding complex tensor operations.

2) Unlike state-feedback LQR, where theories of conver-
gence often hinge on the concept of gradient domi-
nance [11], [12], [13], [14], [16], [18], the landscape
of SOF problems presents greater complexities. This
complexity arises from the disconnected nature of the
stabilizing SOF domain and the potential multiplicity
of stationary points. Leveraging the compactness and L-
smoothness of the SOF cost function, we show that three
different policy gradient methods (the vanilla policy gra-
dient, the natural policy gradient, and the Gauss–Newton
method) can converge to stationary points at a (nearly)
dimension-free rate, given an initial stabilizing policy.

3) Furthermore, when the initial point is proximate to a
local minimum, we demonstrate that the vanilla policy
gradient method converges linearly toward it, predicated
on the Lipschitz continuity of the Hessian.

It is worth noting that the primary goal of this study is
not the introduction of a new control algorithm for specific
control problems. Rather, we focus on the SOF problem as a

fertile ground for investigating the convergence, complexity,
and optimality of policy gradient-based RL algorithms. Our
findings offer new perspectives on the effectiveness of policy
gradient methods in SOF problems and illuminate the efficacy
of employing general policy gradient methods when learning
SOF policies with unknown systems.

Notation: ‖M‖, ‖M‖F , and ρ(M) denote the induced
2-norm, Frobenius norm, and spectral radius of a matrix M; for
square matrices, Tr(M), λmin(M), and σmin(M) represent the
trace, minimal eigenvalue, and minimal singular value; vec(M)
indicates the vectorized form; ∂M signifies the boundary of the
set M; M � N (M � N) implies that M−N is positive definite
(semidefinite); Sn+ (Sn++) refers to the set of symmetric n × n
positive semidefinite (definite) matrices; N stands for the set
of natural numbers; Ex denotes taking expectation over x; and
In denotes the identity matrix.

II. PROBLEM STATEMENT

Consider the discrete-time LTI dynamic model

xt+1 = Axt + But

yt = Cxt (1)

with x denoting the state, y representing the output, and matri-
ces A ∈ R

n×n, B ∈ R
n×m, and C ∈ R

d×n describing the system
dynamics. The LQR problem aims to find a control policy to
minimize the accumulated linear quadratic cost

Ex0∼D
[ ∞∑

t=0

(
x	

t Qxt + u	
t Rut

)]
(2)

where it is assumed that Ex0∼D[x0x	
0 ] � 0, and Q ∈ S

n++
and R ∈ R

m++ are performance weights. The assumption on
Ex0∼D[x0x	

0 ] � 0 is quite standard in learning-based con-
trol [11], [12] and can be somehow informally thought as the
persistent excitation condition in data-driven control.

The SOF is defined as

ut = −Kyt (3)

with K ∈ R
m×d. Substituting the SOF controller into the

dynamic model (1) yields

xt+1 = AKxt (4)

where AK := A − BKC. We can further reformulate the linear
quadratic cost (2) as

J(K) = Ex0∼D

[ ∞∑
t=0

x	
t

(
Q + C	K	RKC

)
xt

]
. (5)

This study assumes that a stabilizing controller is present. We
refer to the set of all stabilizing control gain K as the feasible
set, that is

K :=
{

K ∈ R
m×d : ρ(AK) < 1

}
. (6)

For the LTI systems (1), the value function of state x takes
the quadratic closed-loop form

VK(xt) := x	
t PKxt (7)

where PK ∈ S
n+.
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We define the accumulated state correlation matrix as

�K := Ex0∼D
∞∑

t=0

xtx
	
t . (8)

If the initial state correlation matrix is positive definite, that is

X0 := Ex0∼D
[
x0x	

0

]
� 0 (9)

one has that the minimal singular value of X0

μ := σmin(X0) > 0. (10)

Since �K � X0, it is straightforward that

σmin(�K) ≥ μ. (11)

With PK and �K , it is well known in [11] and [32] that
SOF control of discrete-time LTI systems with quadratic cost
can be formulated into the following problem.

Problem 1 (Policy Optimization for SOF):

min
K∈K J(K) = Tr(PKX0) = Tr

((
Q + C	K	RKC

)
�K

)
(12)

where PK and �K satisfy the following Lyapunov equations:

PK = Q + C	K	RKC + A	
K PKAK (13a)

�K = X0 + AK�KA	
K . (13b)

The unique positive-definite solution of (13a) can be
expressed as

PK =
∞∑

j=0

A	
K

j
(

Q + C	K	RKC
)
AK

j. (14)

The formulation of Problem 1 enables us to derive the ana-
lytical policy gradients to analyze the optimization landscape.
For this problem, we make the following standard assumption.

Assumption 1: (A,B) is controllable, (C,A) is observable,
and C has independent rows.

Note that the feasible set K of Problem 1 can possess
a disconnected domain, replete with local minima, saddle
points, or even local maxima at the stationary points of each
component [27], [28], [29]; therefore, Problem 1 is gener-
ally nonconvex, making the convergence analysis far from
straightforward.

III. GRADIENTS AND HESSIAN

In this section, we give the analytical expression for both
the gradient and Hessian. The derivations follow similar lines
as the state-feedback LQR case [11], [19].

Lemma 1 (Policy Gradient Formula): For any control gain
K in the feasible set K, we have

∇J(K) = 2EK�KC	 (15)

with EK := (R + B	PKB)KC − B	PKA.
Proof: From (7) and (13a), it follows that:

VK(x0) = x	
0

(
Q + C	K	RKC

)
x0 + x	

0 A	
K PKAKx0

= x	
0

(
Q + C	K	RKC

)
x0 + VK(AKx0). (16)

Taking the gradient of VK(x0) w.r.t. K, one has

∇VK(x0) = 2EKx0x	
0 C	 + x	

1 ∇PKx1
∣∣
x1=AKx0

= 2EKx0x	
0 C	 + ∇VK(x1)

∣∣
x1=AKx0

= 2EK

∞∑
t=0

(
xtx

	
t

)
C	. (17)

By taking expectation w.r.t. D, the expression of policy
gradient is obtained

∇J(K) = Ex0∼D∇VK(x0) = 2EK�KC	 (18)

which completes the proof.
Note that the objective function J(K) is twice differentiable.

Thus, the analytical form of the Hessian of the objective func-
tion can be derived. To simplify our analysis without delving
into tensors, we analyze the Hessian along a certain matrix
Z ∈ R

m×d, whose expression is as follows:

∇2J(K)[Z,Z]: = d2

dλ2

∣∣∣
λ=0

J(K + λZ)

= Tr

(
d2

dλ2

∣∣∣
λ=0

PK+λZX0

)
. (19)

Lemma 2: For any control gain K in the feasible set K, the
Hessian of the objective function J(K) along a certain matrix
Z ∈ R

m×d is

∇2J(K)[Z,Z] = Tr
(

2(ZC)	
(

B	PKB + R
)

ZC�K

)

− Tr
(

4(BZC)	P′
K[Z]AK�K

)
(20)

where

P′
K[Z] =

∞∑
j=0

A	
K

j
(

C	Z	EK + E	
K ZC

)
AK

j. (21)

Proof: Denote P′
K[Z] := (d/dλ)|λ=0PK+λZ . From (13a),

we have

P′
K[Z] = C	Z	EK + E	

K ZC + A	
K P′

K[Z]AK

=
∞∑

j=0

A	
K

j
(

C	Z	EK + E	
K ZC

)
AK

j. (22)

Then, its second derivative P′′
K[Z] := (d2/dλ2)|λ=0PK+λZ can

be derived as

P′′
K[Z] = S1 + A	

K P′′
K[Z]AK =

∞∑
j=0

A	
K

j
S1AK

j (23)

where

S1 := 2
(

C	Z	(R + B	PKB
)

ZC

− (BZC)	P′
K[Z]AK − A	

K P′
K[Z]BZC

)
. (24)
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Furthermore, from (19) and (13b), we can show that

∇2J(K)[Z,Z] = Tr

⎛
⎝ ∞∑

j=0

A	
K

j
S1AK

jX0

⎞
⎠

= Tr

⎛
⎝S1

∞∑
j=0

AK
jX0A	

K
j

⎞
⎠

= Tr(S1�K)

= Tr
(

2(ZC)	
(

B	PKB + R
)

ZC�K

)

− Tr
(

4(BZC)	P′
K[Z]AK�K

)
. (25)

IV. COST FUNCTION PROPERTIES

Building upon the derived explicit formulas for the gradi-
ent and Hessian, we are now ready to discuss the optimization
landscape for the SOF problem. This section develops some
essential properties of the cost function, which will play
an important role in the final convergence analysis. The
intermediate lemmas required by the property analysis are
provided in Appendix A.

Lemma 3 (Coercive Property): The SOF cost (12) is coer-
cive, that is, for all sequence {Ki}∞i=1 ⊆ K, we have

J(Ki) → +∞, if Ki → K ∈ ∂K or ‖Ki‖ → +∞.

See Appendix B for detailed proof. Based on the coercivity
nature, we can obtain the compactness of the sublevel set.

Lemma 4 (Compactness of Sublevel Set): Given a scalar
α ≥ J(K�) with the globally optimal SOF gain K�, the sublevel
set Kα := {K|J(K) ≤ α} ⊆ K is compact.

Proof: Upon the coercivity proven in Lemma 3, and refer-
ring to [33, Proposition 11.12], it becomes evident that the
set Kα is bounded. Given the continuity of J(K) over K, it
follows that Kα is also closed, which completes the proof.

With the compactness property in place, it becomes possible
to demonstrate that the monotonicity of the objective func-
tion guarantees that the line segment between two neighboring
iterations remains within Kα .

Lemma 5 (Smoothness on Sublevel Set): For all control gain
K in the sublevel set Kα , the norm of the Hessian of the cost
function is bounded by a constant, that is, ‖∇2J(vec(K))‖ ≤ L,
where

L = 2α

σmin(Q)

(
‖R‖ + α

μ

(
1 + 2ζ1

‖B‖‖C‖
)

‖B‖2
)

‖C‖2

with

ζ1 = 1

σmin(Q)

(
α

μ

(
1 + ‖B‖2‖C‖2

)
+ ‖R‖‖C‖2

)
− 1. (26)

Proof: From (19), applying the Taylor series expansion
about direction Z, we can show that

∇2J(K)[Z,Z] = vec(Z)	∇2J(vec(K))vec(Z). (27)

Since ∇2J(vec(K)) is symmetric, one has

‖∇2J(vec(K))‖ = sup
‖Z‖F=1

|vec(Z)	∇2J(vec(K))vec(Z)|

= sup
‖Z‖F=1

|∇2J(K)[Z,Z]|. (28)

Based on (20), we further have

‖∇2J(vec(K))‖
≤ 2 sup

‖Z‖F=1

∣∣∣Tr
(

C	Z	(R + B	PKB
)

ZC�K

)∣∣∣
+ 4 sup

‖Z‖F=1

∣∣∣Tr
(
(BZC)	P′

K[Z]AK�K

)∣∣∣
=: 2q1 + 4q2. (29)

Actually, q1 and q2 are bounded above by

q1 ≤ J(K)

σmin(Q)

(
‖R‖ + J(K)

μ
‖B‖2

)
‖C‖2 (30a)

q2 ≤ ζ1J(K)2

μσmin(Q)
‖B‖‖C‖. (30b)

The detailed derivation of (30) is referred to Appendix C.
Plugging (30) into (29), we finally complete the proof.
In light of Lemma 5, consider any scalar δ ∈ [0, 1] and any

control gains K and K′ residing in the sublevel set Kα . If any
point along the segment defined by (1 − δ)K + δK′ remains
within this sublevel set, then the cost function has

J
(
K′) ≤ J(K)+ Tr

(
∇J(K)	

(
K′ − K

))+ L

2
‖K − K′‖2

F. (31)

Moreover, if the cost function exhibits global L-smoothness,
it is widely acknowledged that the gradient descent method
can attain a stationary point with a gradient step complexity
that is independent of the dimension [34], [35]. However, the
L-smooth property (31) and its derived conclusions are not
applicable to all control gains K,K′ ∈ Kα because the domain
can be nonconvex or even disconnected [27].

Denote the output correlation matrix as

LK := C�KC	 = Ex0∼D
∞∑

t=0

yty
	
t . (32)

Next, we will give the gradient domination condition for
the fully observed case. These results are already estab-
lished in [11]; we provide a short proof in Appendix D for
completeness.

Lemma 6 (Gradient Domination): Denote C := {C ∈
R

n×n : rank(C) = n}. The globally optimal gain of the SOF
problem and the globally optimal performance of the corre-
sponding LQR problem with the state-feedback controller are
denoted as K� and J�s , respectively. Assuming X0 � 0 and that
the control gain K attains a finite performance, we can express
the upper bound of the cost function for K as

J(K)− J�s ≤ ‖�K�‖‖∇J(K)‖2
F

4μ2σmin(C)2σmin(R)
∀C ∈ C. (33)

Additionally, we have the following lower bound:

J(K)− J�s ≥ μTr
(
E	

K EK
)

‖R + B	PKB‖ ∀C ∈ C. (34)

When 1 ≤ rank(C) < n, one only has

J(K)− J
(
K�
) ≤ ‖�K�‖Tr

(
E	

K

(
R + B	PKB

)−1
EK
)
. (35)

The concept of gradient dominance is crucial for achiev-
ing global convergence in gradient descent algorithms, as it
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signifies that no stationary points exist aside from the global
minimum [34], [36]. Nevertheless, when C is not a full-
rank square matrix, this property ceases to be valid (see [27,
Example 3.4]), making it challenging to achieve results beyond
convergence toward a stationary point. Such limitations on
gradient dominance extend to dynamic output-feedback con-
trollers as well, as the set of stabilizing controllers contains at
most two disconnected components [37], [38].

Lemma 7 (M-Lipschitz Continuous Hessian): For any con-
trol gain K in the sublevel set Kα , define γ := maxK∈Kα ‖AK‖
and denote the upper bound of ‖KC‖ as ψ , whose explicit form
is given Lemma 9. Given any scalar δ ∈ [0, 1] and any control
gains K and K′ in the sublevel set, if any point along the seg-
ment between these two gains, represented as (1 − δ)K + δK′,
remains within the sublevel set, then the Hessian of the cost
function satisfies

‖∇2J
(
vec
(
K′))− ∇2J(vec(K))‖F ≤ M‖K′ − K‖F (36)

where

M = 4α2
√

md

μσmin(Q)

((
ζ1 + ζ2

2

)‖B‖‖C‖ + ζ3 + ζ4

2

)
‖B‖‖C‖

ζ1 is defined in (26), and other intermediate parameters are

ζ2 = 2‖C‖
σmin(Q)

(
αγ

μ
‖B‖ + ψ‖R‖

)

ζ3 = 2‖C‖
σmin(Q)

(
α

μ
(ζ1γ + ζ2γ + ‖B‖‖C‖)‖B‖ + ‖R‖‖C‖

)

ζ4 = 2‖C‖
σmin(Q)

(
α

μ
(ζ1γ + ‖B‖‖C‖)‖B‖ + ‖R‖‖C‖

)
.

Proof: Similar to (28), since ∇2J(vec(K)) − ∇2J(vec(K′))
is symmetric, we have

‖∇2J(vec(K))− ∇2J
(
vec
(
K′))‖

= sup
‖Z‖F=1

|∇2J(K)[Z,Z] − ∇2J
(
K′)[Z,Z]|. (37)

By (19), we define

g(δ) := ∇2J
(
(1 − δ)K + δK′)[Z,Z] (38)

and denote K̄ := K+δ(K′−K),
K := K′−K. Then, from (19),
one has

g′(δ) = Tr

(
∂3

∂λ2∂δ

∣∣∣
λ=0

PK+δ(K′−K)+λZX0

)
. (39)

By the fundamental theorem of calculus, it follows that:

‖∇2J(vec(K))− ∇2J
(
vec
(
K′))‖ = sup

‖Z‖F=1
|g(0)− g(1)|

= sup
‖Z‖F=1

|
∫ 1

0
g′(δ)dδ|

≤
∫ 1

0
sup

‖Z‖F=1
|g′(δ)|dδ. (40)

Based on (23), we can observe that

∂3

∂λ2∂δ

∣∣∣
λ=0

PK+δ(K′−K)+λZ =
∞∑

j=0

A	̄
K

j
S2AK̄

j (41)

where

S2 := 2C	Z	B	 ∂PK̄

∂δ
BZC + 2C	Z	B	P′̄

K[Z]B
KC

+ 2C	
K	B	P′̄
K[Z]BZC − 2(BZC)	

∂P′̄
K

[Z]

∂δ
AK̄

− 2A	̄
K

∂P′̄
K

[Z]

∂δ
BZC − (B
KC)	P′′̄

K
[Z]AK̄

− A	̄
K P′′̄

K[Z]B
KC. (42)

According to (39), it follows that:

g′(δ) = Tr

(
2(BZC)	 ∂PK̄

∂δ
BZC�K̄

)

+ Tr
(

4(BZC)	P′̄
K

[Z]B
KC�K̄

)

− Tr

(
4(BZC)	

∂P′̄
K

[Z]

∂δ
AK̄�K̄

)

− Tr
(

2(B
KC)	P′′̄
K[Z]AK̄�K̄

)
. (43)

Similar to the derivation of (30), we can further show that

sup
‖Z‖F=1

|g′(δ)| ≤ 2‖B‖2‖C‖2‖∂PK̄

∂δ
‖Tr
(
�K̄

)

+ 4‖B‖2‖C‖2‖P′̄
K[Z]‖Tr

(
�K̄

)‖
K‖

+ 4‖B‖‖C‖‖∂P′̄
K

[Z]

∂δ
‖Tr
(
�K̄

)
+ 2‖B‖‖C‖‖P′′̄

K
[Z]‖Tr

(
�K̄

)‖
K‖. (44)

According to Lemma 5, we know that P′̄
K

[Z] � ζ1PK̄ .
As a matter of fact, we can also show that (∂PK̄/∂δ) �
ζ2‖
K‖PK̄ , (∂P′̄

K
[Z]/∂δ) � ζ3‖
K‖PK̄ , and P′′̄

K
[Z] � ζ4PK̄

(see Appendix E for detailed derivations). Utilizing the results
of Lemma 8, we can further show that

sup
‖Z‖F=1

|g′(δ)|

≤ 2‖B‖‖C‖((2ζ1 + ζ2)‖B‖‖C‖ + 2ζ3 + ζ4
) α2‖
K‖
μσmin(Q)

.

(45)

Plugging (45) into (40) and remembering ‖X‖ ≤ ‖X‖F ≤√
rank(X)‖X‖, we finally complete the proof.
To the best of our knowledge, the Lipschitz continuity of

the Hessian for the SOF cost function has not been previously
examined. Nonetheless, this discovery is notable for enhanc-
ing the convergence toward a local minimum in nonconvex
optimization scenarios, under relatively mild conditions [35].
Moreover, recent studies [39], [40], [41] indicate that the
Hessian Lipschitz property facilitates efficient navigation away
from strict saddle points in general gradient-based nonconvex
optimization problems.

Remark 1: The coercive property, compactness of the sub-
level set, and L-smoothness of the cost function in the SOF
problem, can be deemed as partially observed counterparts
to the properties of the state-feedback LQR cost. The asso-
ciated proofs follow similar lines as the state-feedback LQR
case [12], [19]. Different from these properties, to the best of
our knowledge, we are the first to establish the M-Lipschitz
continuous Hessian in both SOF and state-feedback LQR
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problems. Notably, this property cannot be straightforwardly
derived using methods akin to those employed for estab-
lishing L-smoothness [19]. This is because the analysis
of ∇3J(vec(K)) necessitates complicated tensor operations.
To circumvent these tensor-related complexities, we directly
establish the M-Lipschitz continuous Hessian by adhering to
the Lipschitz continuity definition (36).

V. CONVERGENCE

This section presents new convergence findings for three
variants of policy gradient methods applied to SOF: 1) the
vanilla policy gradient; 2) the natural policy gradient; and
3) the Gauss–Newton method. These three methods have been
extensively analyzed in related studies [11], [12], [19]. Given
that the cost function J(K) is nonconvex, the properties out-
lined in Section IV play a crucial role in facilitating the
convergence analysis for these policy gradient methods.

A. Vanilla Policy Gradient

The vanilla policy gradient method iterates as follows:

Ki+1 = Ki − η∇J(Ki) (46)

with the initial gain K0 ∈ K and the step size η. If the line
segment [Ki,Ki+1] is verified to lie within a sublevel set, then
the convergence of the iteration gain obtained by (46) can
be directly inferred by leveraging the L-smoothness property
specified in Lemma 5 [35]. Before we proceed to the main
proofs, let us give the following definition.

Definition 1: Given a differentiable function J(·), if
‖∇J(K)‖F ≤ ε, K is an ε-stationary point.

Theorem 1: Assume that J(K0) = α and X0 � 0. If we run
the vanilla policy gradient method (46) with any step size η ∈
(0, 1/L], J(Ki) is monotonically diminishing (which indicates
Ki ∈ Kα ⊆ K, that is, Ki is stabilizing), and an ε-stationary
point will be obtained in

2α

ηε2
(47)

iterations. Additionally, for each iteration i, the line segment
[Ki,Ki+1] ⊆ Kα . If C is full rank, an εJ-optimal gain KN , that
is, J(KN)− J�s ≤ εJ , is obtained when the iteration step

N ≥ ‖�K�‖
2ημ2σmin(C)2σmin(R)

log

(
J(K0)− J�s

εJ

)
. (48)

Proof: We first define an open set Ko
α := {K|J(K) < α} ⊆

K, whose complement (Ko
α)

c is a closed set. By invoking
Lemma 5, for a given φ ∈ (0, 1), there is a positive num-
ber ς so that ‖∇2J(vec(Ki))‖ ≤ L < L + φL holds for all
Ki ∈ Kα ⊂ Kα+ς .

Due to the compactness of Kα established by Lemma 4,
the distance between Kα and (Ko

α+ς )c, represented by d =
inf{‖Ki − Kj‖ ∀Ki ∈ Kα ∀Kj ∈ (Ko

α+ς )c}, is guaranteed to be
positive. Now, choose a step size t so that t ≤ min{2/(L +
φL), d/‖∇J(Ki)‖}. This ensures that the segment [Ki,Ki −
t∇J(Ki)] ⊆ Kα+ς . According to the L-smoothness result (31),
one has

J(Ki) ≥ J(Ki − t∇J(Ki))+ t

(
1 − (L + φL)t

2

)
‖∇J(Ki)‖2

F.

(49)

Given the range of step size t, we confirm J(Ki−t∇J(Ki)) ≤
J(Ki) < α, ensuring the iteration point Ki − t∇J(Ki) ∈
Kα and the segment [Ki,Ki − t∇J(Ki)] ⊆ Kα . By apply-
ing similar reasoning through (31), we can demonstrate that
[K,K−2t∇J(K)] ∈ Kα when 2t ≤ 2/((1+φ)L). Furthermore,
using induction, we generalize this result for T ∈ N

+ steps,
establishing that [K,K −Tt∇J(K)] ∈ Kα if Tt ≤ 2/((1+φ)L).

Next, we consider a step size η ≤ 1/L. We can then choose
a positive t > 0 and a positive integer T so that Tt ∈ [η, 2/(L+
φL)]. Then, the segment [Ki,Ki − η∇J(Ki)] ⊆ Kα . Following
a parallel argument to that for (49), we get:

J(Ki − η∇J(Ki)) ≤ J(Ki)− η

2
‖∇J(Ki)‖2

F (50)

where the inequality takes into account that η ≤ 1/L, with the
boundary 1/L selected to achieve the fastest convergence rate.

Given J(K0) = α, (50) indicates that K1 ∈ Kα . Then, for
any iteration i, we can use mathematical induction to arrive at

J(Ki+1) ≤ J(Ki)− η

2
‖∇J(Ki)‖2

F. (51)

Also, the line segment [Ki,Ki+1] ⊆ Kα . Summing up the
above inequality yields

η

2

N∑
i=0

‖∇J(Ki)‖2
F ≤ J(K0)− J(KN+1) ≤ J(K0)− J

(
K�
)
. (52)

It then follows that limi→∞ ‖∇J(Ki)‖2
F = 0 and:

min
0≤i≤N

‖∇J(Ki)‖2
F ≤ 2(J(K0)− J(K�))

ηN
≤ 2α

ηN
(53)

which shows the vanilla policy gradient can reach an ε-
stationary point within (2α/ηε2) iterations.

Furthermore, when C ∈ C, combining (51) and (33) yields

J(Ki+1)− J(Ki) ≤ −2ημ2σmin(C)2σmin(R)

‖�K�‖
(
J(Ki)− J�s

)
.

(54)

This subsequently results in

J(Ki)− J�s ≤
(

1 − 2ημ2σmin(C)2σmin(R)

‖�K�‖
)i(

J(K0)− J�s
)
.

(55)

This proves the second claim of this theorem.
Theorem 1 establishes that, starting with an initial stabi-

lizing control gain, the vanilla policy gradient method for
the SOF problem ensures both the recursive stability of the
control policy and a monotonically decreasing cost func-
tion. Moreover, the convergence rate to a stationary point is
dimension-independent. To offer a unified view that encom-
passes both SOF and state-feedback LQR, our findings also
reveal that the vanilla policy gradient method globally con-
verges to a unique minimum at a linear rate when the state is
fully observed. In this context, the convergence rate outlined
in (48) aligns with the conclusions in [11, Th. 7]. Notably, in
contrast to [11, Th. 7], we provide an explicit upper bound of
the step size η such that (51) is satisfied.

Although the convergence to stationary points of the vanilla
policy gradient for SOF has been established, it is important
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to note that these stationary points can be local minima, sad-
dle points, or even local maxima. Next, we will proceed to
demonstrate that under mild assumptions, the vanilla method
can indeed converge to a local minimum.

Theorem 2: Suppose all the conditions in Lemmas 5 and 7
hold. Assume that Kβ ⊂ Kα , where β < α. So, the distance
d = inf{‖Ki − Kj‖∀Ki ∈ Kβ∀Kj ∈ (Ko

α)
c} between two com-

pact sets is positive. For the sublevel set Kβ , assume that there
is a local minimum K# with l = λmin(∇2J(vec(K#)) > 0.
Given that the initial gain K0 is sufficiently close to this local
minimum K#, denoted by an initial error r0 = ‖K0 − K#‖F <

r̄ = 2l/M, and fulfilling the condition r̄r0/(r̄ − r0) ≤ d, the
vanilla policy gradient using a constant step size η ≤ 1/L has
an upper error bound

‖Ki − K#‖F ≤ r̄r0

r̄ − r0

(
1

1 + ηl

)i

. (56)

Proof: Denote the set of gains around the minimum K# as
K

# := {K ∈ R
m×d:‖K − K#‖F ≤ r̄r0/(r̄ − r0) ≤ d}. Then,

we have K
# ⊂ Kα . For any scalar δ ∈ [0, 1] and any control

gains K,K′ ∈ K
#, it follows that (1 − δ)K + δK′ ∈ K

# ⊂ Kα .
Therefore, the conclusions of Lemmas 5 and 7 can be applied
directly. Finally, the upper error bound of iterative gain can
be immediately derived from [35, Th. 1.2.4].

When initialized near local minima, Theorem 2 assures
that vanilla policy gradient will exhibit linear convergence
concerning the control gain. Although the aforementioned the-
oretical analysis relies on full awareness of model parameters
and cost function details, it is worth noting the applicability
of this analysis in model-free environments. In such set-
tings, data-driven approaches like zeroth-order optimization
techniques can be employed to offer an unbiased estimation
of ∇J(K) [11], [42], [43]. Hence, our findings suggest that
data-driven methods can also effectively handle discrete-time
SOF problems, provided the gradient is approximated with
reasonable precision.

B. Natural Policy Gradient

Besides the vanilla policy gradient method, the natural
policy gradient method is also widely used in RL
research [11], [19], [30]. The natural gradient method iterates
as follows:

K′ = K − η∇NAJ(K) (57)

where

∇NAJ(K) = ∇J(K)L−1
K

is the natural policy gradient. More explanations for this
update rule can be found in [11].

Theorem 3: Suppose J(K0) = α and X0 � 0. The cost
J(Ki) of natural gradient descent (57) is monotonically dimin-
ishing (which indicates Ki ∈ Kα ⊆ K, that is, Ki is stabilizing),
and an ε-stationary point, that is, ‖∇NAJ(Ki)‖F ≤ ε, can be
reached in

2α

ημσmin(C)2ε2
(58)

iterations, where the step size η ≤ μσmin(C)2/L. If C is full
rank, an εJ-optimal control gain KN , satisfying J(KN)− J�s ≤
εJ , is achieved when the iteration step

N ≥ ‖�K�‖
2ημσmin(R)

log

(
J(K0)− J�s

εJ

)
. (59)

The proof of Theorem 3 is provided in Appendix F, which
is similar to that of Theorem 1. Theorem 3 illustrates that the
natural policy gradient technique also converges to a station-
ary point in SOF problems at a nearly dimension-free rate.
The term “nearly dimension-free rate” suggests that the con-
vergence does not explicitly depend on the system dimension.
Besides, the explicit form of the convergence rate (59) for the
fully observed case (C ∈ C) is also provided for complete-
ness, which is consistent with the result given in [11, Th. 7].
Similar to the vanilla policy gradient method, the natural pol-
icy gradient method can also be implemented in a model-free
manner. Since LK = Ex0∼D

∑∞
t=0 yty	

t , one can just estimate
∇NAJ(K) from cost and output information trajectories. The
numerical evidence given in existing studies [11], [19] shows
that the natural policy gradient method usually leads to a faster
convergence speed than the vanilla policy gradient method.

C. Gauss–Newton Policy Gradient

Next, we consider the Gauss–Newton policy gradient
method, which iterates as follows:

K′ = K − η∇GNJ(K) (60)

where

∇GNJ(K) =
(

R + B	PKB
)−1∇J(K)L−1

K

is the Gauss–Newton policy gradient. More explanations for
this update rule can be found in [11].

Theorem 4: Suppose J(K0) = α and X0 � 0. If we run
Gauss–Newton natural gradient descent (60) with any step size
η ≤ μσmin(R)σmin(C)2/L, J(Ki) is monotonically diminishing
(which indicates Ki ∈ Kα ⊆ K, that is, Ki is stabilizing),
and an ε-stationary point, that is, ‖∇GNJ(Ki)‖F ≤ ε, will be
reached in

2α

ημσmin(R)σmin(C)2ε2
(61)

iterations. If C ∈ C, an εJ-optimal control gain KN , satisfying
J(KN)− J�s ≤ εJ , is achieved when the iteration step

N ≥ ‖�K�‖
2ημ

log

(
J(K0)− J�s

εJ

)
. (62)

See Appendix G for details on deriving Theorem 4.
Theorem 4 establishes the result of nearly dimension-free con-
vergence to stationary points of the Gauss–Newton method.
The explicit form of the convergence rate (62) for the fully
observed case (C ∈ C) is consistent with the result given
in [11, Th. 7]. Different from the vanilla policy gradient
and the natural policy gradient methods, the Gauss–Newton
method is not suitable for model-free settings since it requires
the knowledge of matrices B and PK .

Remark 2: The Gauss–Newton method and the natural pol-
icy gradient method generally converge faster than the vanilla
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policy gradient method in terms of iteration number [11], [19].
As a tradeoff, these two methods need more information to
calculate the update gradients, taking up more computational
resources. Notably, the Gauss–Newton method is ill-suited
for model-free settings, as its gradient estimation relies on
matrices B and PK .

D. Impact of Initial Distribution

Up to this point, we have demonstrated that all three pol-
icy gradient methods are capable of converging to stationary
points at a nearly dimension-free rate. When implementing
these policy gradient algorithms in practice, it is crucial to
recognize that these stationary points are not fixed; they are
influenced by the initial state distribution.

Proposition 1: Let K‡ represent the stationary point of the
SOF problem. When C lacks full rank and K‡C �= K�s , K‡ is
influenced by the initial state distribution. Here, K�s represents
the optimal solution for state feedback LQR.

Proof: For the case where C ∈ C, Lemmas 1 and (33) in
Lemma 6 establish that

‖EK�s ‖F = 0. (63)

From the definition of the SOF controller (3), one has

ut = −KCxt

where KC effectively serves as a state-feedback gain.
Lemma 6 asserts that K�s is unique, which means

‖EK‖F = 0 ⇐⇒ KC = K�s .

However, when C lacks full rank, it is possible that no gain
K will satisfy KC = K�s .

If K ∈ K and X0 � 0, theory [32, Lemma 2] suggests that
the Lyapunov equation (13b) admits a unique positive-definite
solution �K . For different initial distributions D and D′, (13b)
indicates that

�K‡ �= �′
K‡ if X0 �= X′

0 = Ex0∼D′x0x	
0 .

According to (15), a stationary point K‡ meets the condition

‖∇J
(

K‡
)
‖F = 2‖EK‡�K‡ C	‖F = 0.

However, if ‖EK‡‖F �= 0 (that is, K‡C �= K�s ), we cannot
guarantee that ‖∇J(K‡)‖F = ‖EK†�′

K‡ C	‖F will be zero for
all possible distribution D′, due to its influence on �′

K‡ .
Nevertheless, when C /∈ C, the stationary point K‡ in SOF

is influenced by the initial state distribution D. In other words,
different initial distributions could yield distinct stationary
points unless K‡C = K�s .

The foregoing theoretical discussion suggests that to achieve
an effective SOF policy, the initial state distribution should be
carefully selected to match the practical application conditions.

VI. NUMERICAL RESULTS

In this section, we will present some numerical simula-
tions to verify the performance of the above gradient descent
methods in optimizing SOF problems. Since the vanilla pol-
icy gradient method and the natural policy gradient method
can be implemented in a model-free manner, their model-free
versions are also developed and tested.

Algorithm 1 Model-Free Vanilla and Natural Policy Gradient
Input: stabilizing policy gain K0, number of trajectories z, roll-out
length l, perturbation amplitude r, step size η
repeat

Gradient Estimation:
for i = 1, . . . , z do

Sample x0 from D
Simulate Kj for l steps starting from x0 and observe
y0, · · · , yl−1 and c0, · · · , cl−1.
Draw Ui uniformly at random over matrices such that
‖Ui‖F = 1, and generate a policy Kj,Ui = Kj + rUi.
Simulate Kj,Ui for l steps starting from x0 and observe
c′

0, · · · , c′
l−1.

Calculate empirical estimates:

Ĵi
Kj

=
l−1∑
t=0

ct, L̂i
Kj

=
l−1∑
t=0

yty
	
t , ĴKj,Ui

=
l−1∑
t=0

c′
t.

end for
Return estimates:

∇̂J(Kj) = 1

z

z∑
i=1

ĴKj,Ui
− Ĵi

Kj

r
Ui, L̂Kj = 1

z

z∑
i=1

L̂i
Kj
.

Policy Update:
Vanilla policy gradient Kj+1 = Kj − η∇̂J(Kj).

Natural policy gradient Kj+1 = Kj − η∇̂J(Kj)L̂Kj
−1
.

j = j + 1.
until ‖ ̂∇J(Kj−1)‖F ≤ ε

A. Model-Free Optimization

In the model-free setting, the model parame-
ters, A, B, C, Q, R, are unknown. In keeping with other
work in [11], we assume the algorithm has access to the
observation yt and running cost ct at each time step, where
ct := x	

t Qxt + u	
t Rut. Using the zeroth-order optimization

approach [11], [42], [43], Algorithm 1 provides a data-driven
procedure to estimate the gradients of both vanilla and natural
policy gradient methods.

B. Example I: Open-Loop Unstable Linear System

Consider an internally unstable linear system

A =
[

1.1 0.1
0 1.1

]
,B =

[
0

0.1

]
,C = [

1.0 1.0
]

(64)

which is a discrete version of the famous Doyle’s LQG exam-
ple. Let Q = 0.25I2, R = 0.2, and X0 = 0.1I2. We employ
all three policy gradient methods in model-based settings and
Algorithm 1 in model-free settings to learn a suboptimal SOF
policy. The initial controller is set as K0 = 9. The optimal
gain K� = 4.0637 can be found by solving several Lyapunov
equations given in [44, Th. 1]. The step size of all methods is
set as η = 0.2. Besides, other hyperparameters of Algorithm 1
are set as: r = 0.001, z = 214, and l = 100.1

The relative errors of both the control gain and the cost
function are presented in Fig. 1, which are computed as
‖K − K�‖F/‖K�‖F and |J(K) − J(K�)|/|J(K�)|, respectively.
We can easily observe that all model-based policy gradient

1Our code is available athttps://github.com/jieli18/sof.
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(a) (b)

Fig. 1. Learning curves of different methods for Example I. The solid lines
correspond to the mean and the shaded regions correspond to an interval
between maximum and minimum values over ten runs. (a) Policy error.
(b) Cost error.

methods converge to the optimal solution within 100 itera-
tions. As expected, the two model-free methods, especially
the model-free natural policy gradient method, converge more
slowly and unsteadily than their model-based counterparts due
to gradient estimation errors. These results provide numerical
evidence for our theoretical convergence analysis.

For the internally unstable system, such as (64), the stabil-
ity of the controller can be assessed by evaluating the spectral
radius of the closed-loop system matrix. This process, how-
ever, requires the knowledge of model dynamics. As a result,
finding stabilizing controllers can be relatively complex when
using model-free methods. In such instances, the trial and error
approach could provide a practical strategy for obtaining an
initial stabilizing controller. In terms of applying a controller
to the dynamic system, the convergence or divergence of the
observation output provides a useful criterion for determining
the stability of the closed-loop system. Through the application
of this manner, we are able to establish the set of stabilizing
controllers for the internally unstable system (64), which is
K = {K:K ∈ (2.1, 22.05)}.

We run all three policy gradient methods with 10 randomly
generated initial stabilizing controllers. The relative errors of
control gains are shown in Fig. 2, where the curves of the same
color start from the same initial point. It can be seen that all
methods converge within 100 iterations under different initial
controllers. This further confirms our theoretical convergence
results within the context of an internally unstable system with
randomly chosen initial controllers.

C. Example II: Four-Dimensional Open-Loop Stable System

Consider a circuit system given in [45] with

A =

⎡
⎢⎢⎣

0.90031 − 0.00015 0.09048 − 0.00452
−0.00015 0.90031 0.00452 − 0.09048
−0.09048 − 0.00452 0.90483 − 0.09033
0.00452 0.09048 − 0.09033 0.90483

⎤
⎥⎥⎦

B =

⎡
⎢⎢⎣

0.00468 − 0.00015
0.00015 − 0.00468
0.09516 − 0.00467

−0.00467 0.09516

⎤
⎥⎥⎦,C =

[
1 1 0 0
0 1 0 0

]

where Q = diag([0.1, 0.2, 0, 0]), R = diag([10−6, 10−4]), and
X0 = I4. According to [44, Th. 1], the optimal gain is

(a) (b)

(c) (d)

(e)

Fig. 2. Learning curves of different methods with ten different random initial-
izations (corresponding to curves with different colors). (a) Vanilla gradient.
(b) Natural gradient. (c) Gauss–Newton. (d) Model-free vanilla. (e) Model-free
natural.

(a) (b)

Fig. 3. Learning curves of different methods for Example II. The solid lines
correspond to the mean and the shaded regions correspond to the interval
between maximum and minimum values over ten runs. (a) Policy error.
(b) Cost error.

K∗ =
[

2.9738 − 7.2907
2.1067 − 12.5384

]
.

We set K0 =
[

0 − 1
0 − 2

]
for all methods and adopt the same

hyperparameters as outlined in Section VI-B. The relative
errors in control gain and cost function for various methods
are shown in Fig. 3. The observed trend of this example is
quite similar to the example given in Section VI-B. Overall,
these numerical findings corroborate our theoretical analysis
on convergence.
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VII. CONCLUSION

In this work, we have investigated the optimization land-
scape of three distinct policy gradient algorithms for SOF
problems. Initially, we demonstrated various crucial properties
of the SOF cost function, including coercivity, L-smoothness,
and M-Lipschitz continuity of its Hessian. Utilizing these
foundational properties, we unearthed new understandings
about the convergence behaviors and rates at which all three
policy gradient algorithms arrive at stationary points. These
stationary points are generally influenced by the initial state
distribution. Moreover, provided that the initial gain is around
a local minimum, we demonstrated that the vanilla policy
gradient exhibits linear convergence toward that minimum.
Our numerical experiments suggest that both the vanilla pol-
icy gradient method and the natural policy gradient method
can be implemented in a model-free manner, as long as the
gradient estimations are sufficiently accurate. Additionally,
recent literature highlights the potential of model-free SOF
in H∞ control [46]. Our next steps will involve expanding the
convergence analysis in this specialized domain.

APPENDIX A
INTERMEDIATE LEMMAS

Lemma 8: The upper bound of ‖PK‖ and ‖�K‖ are
given by

‖PK‖ ≤ J(K)

μ
, ‖�K‖ ≤ Tr(�K) ≤ J(K)

σmin(Q)
.

Proof: From (12), one has

J(K) = Tr(PKX0) ≥ μ‖PK‖.
Then, the first claim can be directly obtained. Similarly, J(K)
can also be lower bounded by

J(K) = Tr
((

Q + C	K	RKC
)
�K

)
≥ σmin(Q)Tr(�K)

≥ σmin(Q)‖�K‖
which leads to the second claim.

Lemma 9: For any K ∈ Kα , it holds that

‖KC‖ ≤ ψ :=
√‖R‖α + ‖B‖2α2/μ√

μσmin(R)
+ ‖B‖‖A‖α
μσmin(R)

.

Proof: First, we can observe that

‖KC‖ =
∥∥∥∥
(

R + B	PKB
)−1(

R + B	PKB
)

KC

∥∥∥∥
≤
∥∥∥∥
(

R + B	PKB
)−1

∥∥∥∥
∥∥∥(R + B	PKB

)
KC
∥∥∥

≤
∥∥(R + B	PKB

)
KC − B	PKA + B	PKA

∥∥
σmin(R)

≤ ‖EK‖ + ‖B	PKA‖
σmin(R)

≤
√

Tr
(
E	

K EK
)+ ‖B	PKA‖

σmin(R)
.

From (34), we know that

Tr
(

E	
K EK

)
≤ ‖R + B	PKB‖

μ
J(K).

Thereby, we finally have

‖KC‖ ≤
√‖R + B	PKB‖J(K)√

μσmin(R)
+ ‖B	PKA‖

σmin(R)

≤
√‖R‖α + ‖B‖2α2/μ√

μσmin(R)
+ ‖B‖‖A‖α
μσmin(R)

where the last step follows from Lemma 8.

APPENDIX B
PROOF OF LEMMA 3

Proof: From (12), we can show that

J(Ki) = Tr
((

Q + C	K	
i RKiC

)
�Ki

)
≥ μσmin(R)σmin(C)

2‖Ki‖2

which directly leads to that J(Ki) → +∞ as ‖Ki‖ → +∞.
By (14), we also have

J(Ki) = Tr

⎛
⎝ ∞∑

j=0

A	
Ki

j
(

Q + C	K	
i RKiC

)
AKi

jX0

⎞
⎠

≥ μσmin(Q)
∞∑

j=0

‖AKi
j‖2

F ≥ μσmin(Q)
∞∑

j=0

ρ
(AKi

)2j

= μσmin(Q)
1 − ρ

(AKi

)∞
1 − ρ

(AKi

)2 .
Since ρ(AK) = 1 when K ∈ ∂K, by continuity of the ρ(AKi),
we have ρ(AKi) → 1 as Ki → K ∈ ∂K. Therefore, for every
ε > 0, there exists some N(ε) ∈ N such that 1 − ρ(AKi) < ε

for all i ≥ N(ε). That is, 1 > ρ(AKi) > 1 − ε for i ≥ N(ε).
Hence, J(Ki) is bounded below by

J(Ki) ≥ μσmin(Q)
1

1 − (1 − ε)2
.

It thus follows that J(Ki) → +∞ as Ki → ∂K. This completes
the proof of Lemma 3.

APPENDIX C
DERIVATIONS OF BOUNDS q1 AND q2 IN LEMMA 5

First, for the bound q1, we can easily observe that

q1 ≤ sup
‖Z‖F=1

(
‖C	Z	(R + B	PKB

)
ZC‖Tr(�K)

)

≤ sup
‖Z‖F=1

(
‖C‖2‖Z‖2

F

(
‖R‖ + ‖B‖2‖PK‖

)
Tr(�K)

)

≤ ‖C‖2
(

‖R‖ + ‖B‖2 J(K)

μ

)
J(K)

σmin(Q)
(65)

where the last step follows from Lemma 8.
Next, we focus on the upper bound of q2. Using the

Cauchy–Schwarz inequality, we can show that

q2 ≤ sup
‖Z‖F=1

(
‖(BZC)	P′

K[Z]AK�
1/2
K ‖F

∥∥∥�1/2
K

∥∥∥
F

)

≤ sup
‖Z‖F=1

(
‖C‖‖Z‖‖B‖‖P′

K[Z]‖‖AK�
1/2
K ‖F

√
Tr(�K)

)

≤ ‖C‖‖B‖ sup
‖Z‖F=1

(∥∥P′
K[Z]

∥∥)√Tr
(AK�KA	

K

)√
Tr(�K).
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By (13b), it is not hard to see that �K � AK�KA	
K . Therefore,

we further have

q2 ≤ ‖C‖‖B‖Tr(�K) sup
‖Z‖F=1

‖P′
K[Z]‖

≤ ‖C‖‖B‖ J(K)

σmin(Q)
sup

‖Z‖F=1
‖P′

K[Z]‖ (66)

where the last step follows from Lemma 8. Then, the only
thing left is to show the following bound holds:

sup
‖Z‖F=1

‖P′
K[Z]‖ ≤ ζ1‖PK‖

where ζ1 is as given by (26).
We will prove the above inequality by showing that P′

K[Z] �
ζ1PK . Based on (14) and (21), (C	Z	EK + E	

K ZC) � ζ1(Q +
C	K	RKC) will directly lead to P′

K[Z] � ζ1PK for a given
ζ1 ∈ R

+. Now the remaining task is to find such ζ1.
From (13a), we have

C	Z	EK + E	
K ZC

= C	Z	RKC + C	K	RZC

− C	Z	B	PKAK − A	
K PKBZC

≺ eqC	Z	RZC + C	K	RKC

+ A	
K PKAK + (BZC)	PKBZC

= PK − Q + C	Z	RZC + (BZC)	PKBZC

≺ eq‖PK + C	Z	RZC + (BZC)	PKBZC‖I − Q

≺ eq
Q

σmin(Q)

(α
μ

(
1 + ‖B‖2‖C‖2

)
+ ‖R‖‖C‖2

)
− Q. (67)

Therefore, we prove that P′
K[Z] � ζ1PK . According to (66)

and Lemma 8, this directly leads to (30b).

APPENDIX D
PROOF OF LEMMA 6

The performance difference lemma, also referred to as
almost smoothness, serves as the foundational element for
establishing the gradient domination condition.

Lemma 10 (Performance Difference Lemma): Let K, K′ ∈
K. Then, the following relationship exists:

J
(
K′)− J(K) = 2Tr

(
�K′

(
K′C − KC

)	
EK
)+

+ Tr
(
�K′

(
K′C − KC

)	(
R + B	PKB

)(
K′C − KC

))
.

Proof: Consider state and action sequences x′
t and u′

t
generated by K′, and let c′

t = x′	
t Qx′

t + u′	
t Ru′

t. Then, one has

J
(
K′)− J(K) = Ex0∼D

[ ∞∑
t=0

c′
t − VK(x0)

]

= Ex0∼D

[ ∞∑
t=0

(
c′

t + VK
(
x′

t

)− VK
(
x′

t

))− VK(x0)

]

= Ex0∼D

[ ∞∑
t=0

(
c′

t + VK
(
x′

t+1

)− VK
(
x′

t

))]

where the last step takes advantage of the fact that x0 = x′
0.

Let AK(xt,K′) = ct + VK(xt+1) − VK(xt)|ut=−K′Cxt , which
can be expanded as

AK
(
xt,K′) = x	

t

(
Q + C	K′	RK′C

)
xt

+ x	
t A′	

K PKAK′xt − VK(xt)

= x	
t

(
Q + (

K′C − KC + KC
)	

R
(
K′C − KC + KC

))
xt

+ x	
t

(
A − B

(
K′C − KC + KC

))	
× PK

(
A − B

(
K′C − KC + KC

))
xt − VK(xt)

= 2x	
t

(
K′C − KC

)	((
R + B	PKB

)
KC − B	PKA

)
xt

+ x	
t

(
K′C − KC

)	(
R + B	PKB

)(
K′C − KC

)
xt

= 2x	
t

(
K′C − KC

)	
EKxt

+ x	
t

(
K′C − KC

)	(
R + B	PKB

)(
K′C − KC

)
xt.

Then, we get that

J
(
K′)− J(K)

= Ex0∼D
[ ∞∑

t=0

AK
(
x′

t,K′)]

= Ex0∼D
[ ∞∑

t=0

(
2Tr
(
x′

tx
′	
t

(
K′C − KC

)	
EK
)

+ Tr
(
x′

tx
′	
t

(
K′C − KC

)	(
R + B	PKB

)(
K′C − KC

)))]

= 2Tr
(
�K′

(
K′C − KC

)	
EK
)

+ Tr
(
�K′

(
K′C − KC

)	(
R + B	PKB

)(
K′C − KC

))
.

Next, we show the main proof of Lemma 6.
Proof: Let X = (R + B	PKB)−1EK�K′C	L−1

K′ . From
Lemma 10, we find that

J
(
K′)− J(K)

= 2Tr
(
�K′

(
K′C − KC

)	
EK
)

+ Tr
(
�K′

(
K′C − KC

)	(
R + B	PKB

)(
K′C − KC

))
= Tr

(
�K′C	(
K + X)	

(
R + B	PKB

)
(
K + X)C

)
− Tr

(
�K′C	L−1

K′ C�K′E	
K(

R + B	PKB
)−1

EK�K′C	L−1
K′ C

)

≥ − Tr
(L−1

K′ C�K′E	
K

(
R + B	PKB

)−1
EK�K′C	) (68)

where 
K = K′ −K and the equality holds when K′ = K −X.
Then, one has

J(K)− J
(
K∗)

≤ Tr
(L−1

K∗ C�K∗E	
K

(
R + B	PKB

)−1
EK�K∗C	)

≤ ‖�K∗C	L−1
K∗ C�K∗‖Tr

(
E	

K

(
R + B	PKB

)−1
EK

)

≤ ‖�K∗C	L−1
K∗ C‖‖�K∗‖Tr

(
E	

K

(
R + B	PKB

)−1
EK

)

≤ ‖�K∗‖Tr
(

E	
K

(
R + B	PKB

)−1
EK

)

≤ ‖�K∗‖Tr
(
E	

K EK
)

σmin(R)
. (69)

From (15), it follows that:

‖∇J(K))‖2
F = 4Tr

(
C�KE	

K EK�KC	)

≥ 4μ2σmin(C)
2Tr
(

E	
K EK

)
∀C ∈ C. (70)
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By (69) and (70), one has

J(K)− J
(
K∗) ≤ ‖�K∗‖‖∇J(K))‖2

F

4μ2σmin(C)2σmin(R)
∀C ∈ C. (71)

Suppose K′ satisfies that K′ = K − X. According to (68),
we get

J(K)− J
(
K∗)

≥ J(K)− J
(
K′)

= Tr
(L−1

K′ C�K′E	
K

(
R + B	PKB

)−1
EK�K′C	)

≥ μTr
(
E	

K EK
)

‖R + B	PKB‖ ∀C ∈ C. (72)

In addition, when C ∈ C, since we can always identity the
state x by x = C−1y, it is clear that J(K∗) = J∗

s for every
C ∈ C. By replacing J(K∗) in (71) and (72) with J∗

s , we
finally complete the proof.

APPENDIX E
DERIVATIONS OF ζ2, ζ3, AND ζ4 IN LEMMA 7

From (21), it is clear that

∂PK̄

∂δ
=

∞∑
j=0

A	̄
K

j
(

C	
K	EK̄ + E	̄
K

KC

)
AK̄

j. (73)

Then, we can observe that

C	
K	EK̄ + E	̄
K

KC

= C	
K	RK̄C + C	K̄	R
KC

− C	
K	B	PK̄AK̄ − A	̄
K

PK̄B
KC

≤ 2‖C‖(‖R‖‖K̄C‖ + ‖B‖‖PK̄‖‖AK̄‖)‖
K‖I

≤ 2‖C‖Q

σmin(Q)

(
‖R‖ψ + γ ‖B‖α

μ

)
‖
K‖ (74)

where the last step follows from Lemma 9. Therefore, accord-
ing to (14), we have (∂PK̄/∂δ) � ζ2‖
K‖PK̄ .

Next, we will prove that (∂P′̄
K

[Z]/∂δ) � ζ3‖
K‖PK̄ . Based
on (22), we get

∂P′̄
K

[Z]

∂δ
=

∞∑
j=0

A	̄
K

j
S3AK̄

j (75)

where

S3 := C	Z	(R + B	PK̄B
)

KC − (BZC)	 ∂PK̄

∂δ
AK̄

+ C	
K	(R + B	PK̄B
)

ZC − A	̄
K

∂PK̄

∂δ
BZC

− (B
KC)	P′̄
K

[Z]AK̄ − A	̄
K

P′̄
K

[Z]B
KC.

Recalling that P′̄
K

[Z] � ζ1PK̄ and (∂PK̄/∂δ) � ζ2‖
K‖PK̄ ,
we can also show that

S3 ≤ 2
(
‖C‖2‖R‖ + ‖C‖2‖B‖2‖PK̄‖ + ζ2γ ‖B‖‖C‖‖PK̄‖

+ ζ1γ ‖B‖‖C‖‖PK̄‖)‖
K‖I

≤ 2‖C‖Q

σmin(Q)

(
‖C‖‖R‖ + ‖B‖(‖C‖‖B‖

+ ζ1γ + ζ2γ )
α

μ

)
‖
K‖.

Therefore, we get (∂P′̄
K

[Z]/∂δ) � ζ3‖
K‖PK̄ .

Similarly, for P′′̄
K

[Z], from (23), we can show that

S1 ≤ 2
(
‖C‖2‖R‖ + ‖C‖2‖B‖2‖PK‖ + ζ1γ ‖B‖‖C‖‖PK‖

)
I

≤ 2‖C‖Q

σmin(Q)

(
‖C‖‖R‖ + ‖B‖(‖C‖‖B‖ + ζ1γ )

α

μ

)
.

So, it is clear P′′̄
K

[Z] � ζ4PK̄ , which completes the derivations.

APPENDIX F
PROOF OF THEOREM 3

Proof: We can easily modify the proof of Theorem 1 to
show that for every K ∈ Kα , if η ≤ μσmin(C)2/L, the line
segment [K,K − η∇NAJ(K)] ⊆ Kα . Then from (31), one has

J(Ki+1) ≤ J(Ki)− ηTr
(
∇J(Ki)

	∇NAJ(Ki)
)

+ η2L

2
‖∇NAJ(Ki)‖2

F

≤ J(Ki)− η

(
σmin

(LKi

)− ηL

2

)∥∥∥∇NAJ(Ki)

∥∥∥2

F

≤ J(Ki)− η

(
μσmin(C)

2 − ηL

2

)∥∥∥∇NAJ(Ki)

∥∥∥2

F

≤ J(Ki)− ημσmin(C)2

2

∥∥∥∇NAJ(Ki)

∥∥∥2

F

where the last inequality takes into account that η ≤
μσmin(C)2/L. Note that the boundary μσmin(C)2/L is selected
for achieving the fastest convergence rate. By summing up the
above inequality, one has

μσmin(C)2η

2

N∑
i=0

∥∥∥∇NAJ(Ki)

∥∥∥2

F
≤ J(K0)− J

(
K�
)
.

Consequently, it follows that:

min
0≤i≤N

∥∥∥∇NAJ(Ki)

∥∥∥2

F
≤ 2α

ημσmin(C)2N
.

Thus, the natural policy gradient method can attain an ε-
stationary point in (2α/[ημσmin(C)2ε2]) iterations.

When C ∈ C, by (15) and (31), one has

J(Ki+1) ≤ J(Ki)− 4ηTr
(
�KiE

	
Ki

EKi

)
+ 2η2L

∥∥∥EKi C
−1
∥∥∥2

F

≤ J(Ki)− 4η

(
μ− Lη

2σmin(C)2

)∥∥EKi

∥∥2
F

≤ J(Ki)− 2μη
∥∥EKi

∥∥2
F

≤ J(Ki)− 2ημσmin(R)

‖�K�‖
(
J(Ki)− J

(
K�
))

where the last step follows from (35). It directly follows that:

J(Ki)− J�s ≤
(

1 − 2ημσmin(R)

‖�K�‖
)i(

J(K0)− J�s
)

which completes the proof of the second claim.
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APPENDIX G
PROOF OF THEOREM 4

Proof: We can easily modify the proof of Theorem 1 to
show that for every K ∈ Kα , if η ≤ μσmin(R)σmin(C)2/L, the
segment [K,K − η∇GNJ(K)] ⊆ Kα . Then from (31), one has

J(Ki+1) ≤ J(Ki)− ηTr
(
∇J(Ki)

	∇GNJ(Ki)
)

+ η2L

2
‖∇GNJ(Ki)‖2

F

≤ J(Ki)− η

(
μσmin(R)σmin(C)

2 − ηL

2

)∥∥∥∇GNJ(Ki)

∥∥∥2

F

≤ J(Ki)− ημσmin(R)σmin(C)2

2

∥∥∥∇GNJ(Ki)

∥∥∥2

F

where the last inequality considers the boundary of step
size, that is, η ≤ μσmin(R)σmin(C)2/L. The boundary
μσmin(R)σmin(C)2/L is selected for achieving the fastest con-
vergence rate. By summing up the above inequality, one has

ημσmin(R)σmin(C)2

2

N∑
i=0

∥∥∥∇NAJ(Ki)

∥∥∥2

F
≤ J(K0)− J

(
K�
)
.

Consequently, it follows that:

min
0≤i≤N

‖∇NAJ(Ki)‖2
F ≤ 2α

ημσmin(R)σmin(C)2N
.

Thus, the Gauss–Newton method can attain an ε-stationary
point in (2α/[ημσmin(R)σmin(C)2ε2]) iterations.

When C ∈ C, by (15) and (31), one has

J(Ki+1) ≤ J(Ki)− 4ηTr

(
�KiE

	
Ki

(
R + B	PKi B

)−1
EKi

)

+ 2η2L

∥∥∥∥
(

R + B	PKiB
)−1

EKi C
−1
∥∥∥∥

2

F

≤ J(Ki)− 4η

(
μ− ηL

2σmin(R)σmin(C)2

)

× Tr

(
E	

Ki

(
R + B	PKi B

)−1
EKi

)

≤ J(Ki)− 2ημTr

(
E	

Ki

(
R + B	PKi B

)−1
EKi

)

≤ J(Ki)− 2ημ

‖�K�‖
(
J(Ki)− J

(
K�
))

where the last step follows from (35). It directly follows that:

J(Ki)− J�s ≤
(

1 − 2ημ

‖�K�‖
)i(

J(K0)− J�s
)

which completes the proof of the second claim.
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