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Abstract—This paper presents the Relaxed Continuous-Time
Actor-critic (RCTAC) algorithm, a method for finding the nearly
optimal policy for nonlinear continuous-time (CT) systems with
known dynamics and infinite horizon, such as the path-tracking
control of vehicles. RCTAC has several advantages over existing
adaptive dynamic programming algorithms for CT systems. It
does not require the “admissibility” of the initialized policy or the
input-affine nature of controlled systems for convergence. Instead,
given any initial policy, RCTAC can converge to an admissible,
and subsequently nearly optimal policy for a general nonlinear
system with a saturated controller. RCTAC consists of two phases:
a warm-up phase and a generalized policy iteration phase. The
warm-up phase minimizes the square of the Hamiltonian to achieve
admissibility, while the generalized policy iteration phase relaxes
the update termination conditions for faster convergence. The
convergence and optimality of the algorithm are proven through
Lyapunov analysis, and its effectiveness is demonstrated through
simulations and real-world path-tracking tasks.

Index Terms—Reinforcement learning, continuous-time optimal
control, nonlinear systems.

I. INTRODUCTION

DYNAMIC Programming (DP) offers a systematic way
to solve Continuous Time (CT) infinite horizon optimal
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control problems with known dynamics for unconstrained linear
systems. It does this by using the principle of Bellman optimality
and the solution of the underlying Hamilton-Jacobi-Bellman
(HJB) equation [1], yielding the well-known Linear Quadratic
Regulator (LQR) [2]. In this case, the optimal control policy is
an affine state feedback. However, solving an infinite horizon
optimal control problem analytically becomes more difficult
when the system is subject to operating constraints or has
nonlinear dynamics. This is because it becomes difficult to
obtain an analytical solution of the HJB equation, which is
typically a nonlinear partial differential equation [3]. This is
known as the curse of dimensionality, as the computation burden
grows exponentially with the dimensionality of the system [4].
Traditional DP methods are therefore not applicable in these
cases.

To find a nearly optimal approximation of the optimal control
policy for nonlinear dynamics, Werbos proposed the Adaptive
DP (ADP) method [5], also known as Reinforcement Learning
(RL) in the field of machine learning [6], [7], [8], [9], [10]. A dis-
tinct characteristic of ADP is that it utilizes a critic parameterized
function, such as a Neural Network (NN), to approximate the
value function, and an actor parameterized function to approx-
imate the policy. The classical Value Iteration (VI) framework,
which approximates the value function through one-step back-
up operation, is commonly used for building ADP methods for
discrete-time systems [11]. However, for CT systems, the value
update law of VI requires integrating the running cost over a
finite time horizon, which can lead to learning inaccuracies
due to discretization error [12]. Most ADP methods adopt an
iterative technique called Policy Iteration (PI) to find suitable
approximations of both the value function and policy, which
directly updates the value function by solving the corresponding
Lyapunov equation without the need for discretization [7]. PI
consists of two-step process: 1) policy evaluation, in which
the value function moves towards its true value associated
with an admissible control policy, and 2) policy improvement,
in which the policy is updated to reduce the corresponding
value function.

In recent years, there has been a significant amount of re-
search on the use of ADP (or RL) techniques for the control
of autonomous systems [13], [14], [15], [16], [17]. One exam-
ple of CT optimal control is the ADP algorithm proposed by
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Abu-Khalaf and Lewis, which seeks to find a nearly optimal
constrained state-feedback controller for nonlinear systems by
using a non-quadratic cost function [18]. The value function,
parameterized by a linear function of hand-crafted features, is
trained by the least square method at the policy evaluation step,
and the policy is expressed as an analytic function of the value
function. Utilizing the same single approximator scheme, Dierks
and Jagannathan developed a novel online parameter tuning law
that ensures the optimality of both the value function and control
policy, as well as maintaining bounded system states during the
learning process [19]. [20] proposed a synchronous PI algorithm
with an actor-critic framework for nonlinear CT systems without
input constraints. Both the value function and policy are ap-
proximated by linear methods and tuned simultaneously online.
Furthermore, Vamvoudakis introduced an event-triggered ADP
algorithm that reduces computation cost by only updating the
policy when a specific condition is violated [21], and Dong et
al. expanded upon this concept for use in nonlinear systems
with saturated actuators [22]. In addition, ADP methods have
also been widely applied in the optimal control of incompletely
known dynamic systems [23], [24], [25], [26], [27] and multi-
agent systems [28], [29], [30].

It is worth noting that most existing ADP techniques for CT
systems are valid on the basis of one or both of the following
two requirements:
� A1: Admissibility of Initial Policy: One is the requirement

for an admissible initial policy, meaning that the policy
must be able to stabilize the system. This is because the
infinite horizon value function can only be evaluated for
stabilizing control policies. However, it can be challenging
to obtain an admissible policy, particularly for complex
systems.

� A2: Input-Affine Property of System: Most ADP methods
are limited to input-affine systems because these methods
require that the optimal policy can be represented by the
value function. This means that the minimum point of
the Hamilton function can be solved analytically when
the value function is given. However, this is not possible
for input non-affine systems, making it difficult to directly
solve the optimal policy.

Note that while there are certain methods, such as integral
VI [12] and parallel-control-based ADP methods [31], which
do not require initial admissible control policies, they are only
suitable for linear or input-affine systems. For example, the dif-
ferentiation term of the time derivative of the Lyapunov function
with respect to the control policy can be added to its updating rule
to make the initial admissible policies no longer necessary [19],
[23], [32], which requires the input-affine property. [33] goes one
step further and eliminates the restriction of the affine property
by transforming the general nonlinear system into an affine
system. However, this approach generally leads to some loss in
policy performance. Additionally, the studies mentioned above
approximate the value function or the policy using a single NN
(i.e., the linear combination of predetermined hand-crafted basis
functions). This means that the performance of these methods
is heavily dependent on the quality of hand-crafted features,

limiting their generality since it is challenging to design such
features for high-dimensional nonlinear systems. Therefore, this
paper aims to address these two requirements without sacrificing
optimality guarantees and generality.

In this paper, we propose a relaxed continuous-time actor-
critic (RCTAC) algorithm with the guarantee of convergence
and optimality for solving optimal control problems of general
nonlinear CT systems with known dynamics, which overcomes
the limitation of the above two central requirements. Our main
contributions are summarized as follows:

1) The warm-up phase of RCTAC is developed to relax the
requirement of A1. It is proved that given any initial policy,
when the activation function of the value network meets
certain requirements, the warm-up phase can converge
to an admissible policy by continuously minimizing the
square of the Hamiltonian. Unlike the policy tuning rule
used in [19], [23], [32], which also relaxes A1 but is
restricted to input-affine systems and single-NN-based
policies, the developed warm-up phase is applicable to
general non-affine systems. Moreover, RCTAC obviates
the need for designing hand-crafted basis functions by uti-
lizing multi-layer neural networks to approximate both the
actor and critic, which create mappings from the system
states to control inputs and the value function, respectively.

2) Different from [12], [19], [23] which require input-affine
systems because the policy must be represented analyt-
ically by the value function, the policy network in the
RCTAC algorithm is updated by directly minimizing the
associated Hamiltonian using gradient descent methods
in the generalized PI phase. This allows the RCTAC algo-
rithm to be applied to arbitrary nonlinear dynamics with
bounded and non-affine inputs, thereby relaxing the re-
quirement of A2. Compared to the method of transforming
general nonlinear systems into affine systems by creating
augmented systems [33], our method does not sacrifice
the guarantee of theoretical optimality.

3) We introduce novel update termination conditions for the
policy evaluation and improvement processes, resulting
in a faster convergence speed than the corresponding PI
methods. We also provide a Lyapunov analysis to prove
the convergence and optimality of RCTAC.

Throughout the paper, we provide two detailed numerical
experiments to show the generality and efficacy of the proposed
RCTAC algorithm, including a linear optimal control problem
and a path-tracking control task for vehicles with nonlinear
and non-input-affine dynamics. Besides, we demonstrate the
practical application performance of our algorithm through an
actual longitudinal and lateral vehicle control task.

Organization: Section II provides the formulation of the op-
timal control problem and the description of PI. In Section III,
we describe the RCTAC algorithm and analyze its convergence
and optimality. In Section IV, we present simulation examples
that show the generality and effectiveness of the RCTAC algo-
rithm for CT system. In Section V, we conduct experiments to
verify the effectiveness of the method in practical applications.
Section VI concludes this paper.
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II. MATHEMATICAL PRELIMINARIES

A. HJB Equation

This study considers the time-invariant system

ẋ(t) = f(x(t), u(t)), (1)

where x ∈ R
n denotes the state, u ∈ R

m denotes the control
input, and f : Rn × R

m → R
n denotes the system dynamics.

The dynamicsf(x, u) is assumed to be Lipschitz continuous on a
compact set Ω that contains the origin. We suppose a continuous
policy u = π(x) on Ω that asymptotically stabilizes the system
exists. We assume the full information of f(x(t), u(t)) is avail-
able. It can be represented by a nonlinear and input non-affine
function or a Neural Network (NN) only if ∂f(x,u)

∂u is accessible.
The control signal u(t) can be saturated or unsaturated. The
value function (cost-to-go) of policy π(x) is calculated as

V π(x) =

∫ ∞

t

l (x(τ), π(x(τ))) dτ
∣∣∣
x(t)=x

, (2)

where l : Rn × R
m → R is positive definite, i.e., if and only if

(x, u) = (0, 0), l(x, u) = 0; otherwise, l(x, u) > 0. For dynam-
ics in (1) and the corresponding value function in (2), we give
the associated Hamilton function

H

(
x, u,

∂V π(x)

∂x

)
:= l(x, u) +

∂V π(x)

∂x� f(x, u). (3)

Definition 1: (Admissible Policy [34]). A controller π(x) is
called the admissible policy, denoted by π(x) ∈ Ψ(Ω), if it is
continuous on Ω with π(0) = 0, and stabilizes (1) on Ω.

Given an admissible policy π(x) ∈ Ψ(Ω), the differential
equivalent to (2) on Ω is called the Lyapunov equation

H

(
x, π(x),

∂V π(x)

∂x

)
= 0, (4)

where V π(0) = 0. Therefore, given a policy π(x) ∈ Ψ(Ω), we
can obtain the value function (2) of system (1) by solving
the Lyapunov equation. Then the optimal control problem for
Continuous Time (CT) system can be formulated as solving a
policy π(x) ∈ Ψ(Ω) such that the corresponding value function
is minimum. The minimized or optimal value function V �(x(t))
defined by

V �(x(t)) = min
π(x)∈Ψ(Ω)

∫ ∞

t

l(x(τ), π(x(τ))dτ, (5)

satisfies the classical Hamilton-Jacobi-Bellman (HJB) equation

min
u

H

(
x, u,

∂V �(x)

∂x

)
= 0, V �(0) = 0. (6)

Meanwhile, the optimal control policy π�(x) can be calcu-
lated as

π�(x) = argmin
u

H

(
x, u,

∂V �(x)

∂x

)
, ∀x ∈ Ω. (7)

which is the globally optimal solution to (5). Inserting V �(x)
and π�(x) in (4), one can reformulate (6) a

l(x, π�(x)) +
∂V �(x)

∂x� f(x, π�(x)) = 0

Algorithm 1: PI for CT optimal control.

Initial with policy π0 ∈ Ψ(Ω)
Given any small positive number ε and let i = 0
while maxx∈Ω |V i(x)− V i+1(x)| ≥ ε do

1. Find value function V i(x) for all x ∈ Ω by

l(x, πi(x)) +
∂V i(x)

∂x� f(x, πi(x)) = 0, V i(0) = 0

(8)
2. Find new policy πi+1(x) by

πi+1(x) = argmin
u

[
l(x, u) +

∂V i(x)

∂x� f(x, u)

]
(9)

i = i+ 1
end while

with V �(0) = 0. The optimal value function is shown to exist
and be unique in [35]. To obtain the optimal policy, we first need
to solve the HJB (6) to find the value function, and then use it
to calculate the optimal policy using (7). However, due to the
nonlinear property of the HJB equation, it is often challenging
or even impossible to find a solution.

B. Policy Iteration

Rather than attempting to solve the HJB equation directly,
most Adaptive Dynamic Programming (ADP) methods adopt
an iterative technique, called Policy Iteration (PI), to approx-
imate both the value function and the policy [11]. PI consists
of alternating between policy evaluation using (4) and policy
improvement using (7). The algorithm proposed in this paper is
also based on PI, as shown in the pseudocode in Algorithm 1.

As shown in Algorithm 1, the first step of PI is to find an initial
policy π0(x) ∈ Ψ(Ω), because the associated value function
V 0(x) is finite only when the system is asymptotically stable.
Algorithm 1 then iteratively refines both the optimal control
policy and the optimal value function. The convergence and
optimality of the algorithm are proven in [18].

C. Value Function and Policy Approximation

In previous ADP research for CT systems, the value function
V i(x) and policy πi(x) are usually approximated by linear
methods, which requires a large number of artificially designed
basis functions [24]. In recent years, NNs are favored in many
fields, such as deep learning and Reinforcement Learning (RL),
due to their better generality and higher fitting ability [36]. In
our work, we represent the value function and policy using
multi-layer neural networks (NNs), referred to as the value NN
V (x;ω) (Vω(x) for short) and the policy NN π(x; θ) (πθ(x) for
short), where w and θ denote network weights. The two NNs
in this case are used to map the original system states to the
estimated value function and control inputs, respectively.

By inserting the value and policy network in (3), we can
obtain an approximated Hamiltonian expressed in terms of the
parameters w and θ

H(x, ω, θ) = l(x, πθ(x)) +
∂Vω(x)

∂x� f(x, πθ(x)).
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We refer to the algorithm combining PI and multi-layer NN as
approximate PI (API), which involves processes alternatively
tuning each of the two networks to find nearly optimal parame-
ters ω� and θ� satisfying Vω�(x) ≈ V �(x), πθ�(x) ≈ π�(x).

Given any policy πθ ∈ Ψ(Ω), the value network is tuned by
solving the Lyapunov (8) during the policy evaluation phase of
API, which is equivalent to finding parameters w to minimize
the following critic loss function

Lc(ω, θ) = Ex∼dx

[
H(x, ω, θ)2

]
, (10)

where dx represents the state distribution over Ω. It is impor-
tant to note that dx can be any distribution that satisfies the
requirement of a positive probability density for all x ∈ Ω, such
as the uniform distribution. The condition V (x;ω) ≡ 0 can be
easily guaranteed by selecting proper activation function σV (·)
for the value network. Based on (9), the policy improvement
process is carried out by tuning the policy network to minimize
the expected Hamiltonian in each state, which is also called actor
loss function here

La(ω, θ) = Ex∼dx
[H(x, ω, θ)] . (11)

The benefit of updating the policy network by minimizing
La(ω, θ) is that the tuning rule is applicable to any nonlinear
dynamics with non-affine and constrained inputs. This relaxes
the requirement of A2 (from Introduction).

Since the state x is continuous, it is difficult to directly
compute the expectation in (10) and (11). In practice, these two
loss functions can be estimated by the sample average. We can
directly utilize existing NN optimization methods to adjust the
parameters of value and policy NNs, such as Stochastic Gradient
Descent (SGD). The value network and policy network usually
require multiple updating iterations to make (8) and (9) hold
respectively. Therefore, compared with PI algorithm, two inner
updating loops would be introduced to update the value and
policy NNs until convergence. Taking SGD as an example, we
give the pseudocode of API in Algorithm 2.

III. RELAXED CONTINUOUS-TIME ACTOR-CRITIC

Algorithm 2 alternately update the value and policy network
by minimizing (10) and (11), respectively. Note that while one
NN is being adjusted, the other remains constant. Besides, each
NN generally needs multiple iterations to satisfy the terminal
condition, which is referred to as the protracted iterative com-
putation problem [11]. This problem usually leads to the admis-
sibility requirement because the initial policy network needs to
satisfy thatπ(x; θ0) ∈ Ψ(Ω) to have a finite and converged value
function V (x;ω1). Many previous studies used trials and errors
process to obtain feasible initial weights for the policy network
to guarantee the stability of the system [1], [21]. However,
this method usually takes a lot of time, especially for complex
systems. On the other hand, the protracted problem often results
in slower learning [11].

A. Description of the RCTAC Algorithm

Inspired by the idea of generalized PI framework, which is
widely utilized in discrete-time dynamic RL problems [11],

Algorithm 2: API for CT optimal control.

Initial with θ0 such that πθ0(x) ∈ Ψ(Ω) and arbitrary ω0

Choose the appropriate learning rates αω and αθ

Given any small positive number ε and set i = 0
while maxx∈Ω |Vωi(x)− Vωi−1(x)| ≥ ε do

1. Estimate Vωi+1(x) using πθi(x)
ωi+1 = ωi

repeat

ωi+1 = ωi+1 − αω
dLc(ω

i+1, θi)

dωi+1
(12)

until Lc(ω
i+1, θi) ≤ ε

2. Find improved policy πθi+1(x) using Vωi+1(x)
θi+1 = θi;
repeat

La,old = La(ω
i+1, θi+1)

θi+1 = θi+1 − αθ
dLa(ω

i+1, θi+1)

dθi+1
(13)

until |La(ω
i+1, θi+1)− La,old| ≤ ε

i = i+ 1
end while

we present the relaxed continuous-time actor-critic (RCTAC)
algorithm for CT systems to relax the requirement A1 (from
Introduction) and improve the learning speed by truncating the
inner loops of Algorithm 2 without losing the convergence
guarantees. The pseudocode of RCTAC algorithm is shown in
Algorithm 3.

B. Convergence and Optimality Analysis

The solution to (8) may be non-smooth for general nonlinear
and input non-affine systems. In keeping with other research in
the literature [20], we make the following assumptions.

Assumption 1: Ifπ(x) ∈ Ψ(Ω), its corresponding value func-
tion is smooth, i.e. V π(x) ∈ C1(Ω) (cf. [18], [20]).

Multiple theoretical analyses and experimental studies have
demonstrated that optimization algorithms like SGD are capable
of locating the global minimum of the training objective for
multi-layer NNs in polynomial time, provided that the NN is
over-parameterized (with a sufficiently large number of hidden
neurons) [37], [38]. Based on this fact, our second assumption
is:

Assumption 2: Optimization algorithms like SGD can locate
the global minimum of the critic loss function (10) and the actor
loss function (11) for over-parameterized NNs in polynomial
time.

In the following section, we will demonstrate that the nearly
optimal value function and policy can be obtained using
Algorithm 3. To do so, we will first introduce some necessary
lemmas.

Lemma 1: (Universal Approximation [39]). For any continu-
ous function F (x) defined on a compact set Ω, it is possible to
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Algorithm 3: RCTAC algorithm.

Initialize arbitrary θ0 and ω0

Choose the appropriate learning rates α, αω and αθ

Given any small positive number ε and set i = 0
Phase 1: Warm-up

while maxx∈Ω H(x, ωi, θi) ≥ 0 do
Update ω and θ using:

{ωi+1, θi+1} = {ωi, θi} − α
dLc(ω

i, θi)

d{ωi, θi} ; (14)

i = i+ 1
end while

Phase 2: PI with relaxed termination conditions
while maxx∈Ω |Vωi(x)− Vωi−1(x)| ≥ ε do

1. Estimate Vωi+1(x) using πθi(x)
ωi+1 = ωi

repeat
Update ωi+1 using (12)

until H(x, ωi, θi) ≤ H(x, ωi+1, θi) ≤ 0, ∀x ∈ Ω
2. Find improved policy πθi+1(x) using Vωi+1(x)

θi+1 = θi

repeat
Update θi+1 using (13)

until maxx∈Ω H(x, ωi+1, θi+1) ≤ 0
i = i+ 1

end while

construct a feedforward NN with one hidden layer that uniformly
approximates F (x) with arbitrarily small error ε ∈ R

+.
Lemma 1 allows us to ignore the NN approximation errors

when proving the convergence of Algorithm 3.
Lemma 2: Consider the CT dynamic optimal control problem

for (1) and (2). Suppose the solution (V π(x) ∈ C1 : Rn → R) of
the HJB (6) is smooth and positive definite. The control policy
π(x) is given by (7). Then we have that V π(x) = V �(x) and
π(x) = π�(x) (cf. [3]).

The next lemma shows how Algorithm 3 can be leveraged
to obtain an admissible policy π(x; θ) ∈ Ψ(Ω) given any initial
policy π(x; θ0).

Lemma 3: Consider the CT dynamic optimal control problem
for (1) and (2). The value function (cost-to-go) Vω and policy
πθ are represented by over-parameterized NNs. The parameters
w and θ are initialized randomly, i.e., the initial policy π(x; θ0)
can be inadmissible. These two NNs are updated with Algo-
rithm 3. Let Assumption 1 and 2 hold, and suppose all the
hyper-parameters (such as α, αw and αθ) and NN optimization
method are properly selected. The NN approximation errors
are ignored according to Lemma 1. Suppose all the activation
functions σV (·) and biases bV of the value network V (x;ω) are
set to σV (0) = 0 and bV (·) ≡ 0. At the same time, the output
layer activation function σVout also needs to satisfy σVout(·) ≥ 0.
We have that: ∃Na ∈ Z

+, if the iteration index i ≥ Na, then
π(x; θi) ∈ Ψ(x) for the system (1) on Ω.

Proof: According to (4) and Lemma 1, there ∃(ω†, θ†), such
that π(x; θ†) ∈ Ψ(Ω) andH(x, ω†, θ†) = 0 for all x ∈ Ω, which

implies that

min
ω,θ

Lc(ω, θ) = min
ω,θ

Ex∼dx

[
H(x, ω, θ)2

]
= 0.

Since Algorithm 3 updates ω and θ using (14) to continuously
minimize Lc(ω, θ) in Phase 1, according to Assumption 2, the
global minima of Lc(ω, θ) can be obtained in polynomial time.
Before the global minima is found, there exists Na ∈ Z

+, such
that

H
(
x, ωNa , θNa

) ≤ 0, ∀x ∈ Ω. (15)

Taking the time derivative of V (x;ω), we can derive that

dV (x;ω)

dt
=

∂V (x;ω)

∂x� f(x, π(x; θ)),

= H(x, ω, θ)− l(x, π(x; θ)). (16)

Using (15) and (16), one has

dV (x;ωNa)

dt
≤ −l(x, π(x; θNa)), ∀x ∈ Ω.

As the running cost l(x, π(x; θ)) is positive definite, it follows

dVωNa (x)

dt
< 0, ∀x ∈ Ω\{0}. (17)

Since σV (0) = 0, bV (·) ≡ 0 and σVout(·) ≥ 0, we have{
V (x;ω) = 0 if x = 0 & ∀ω,
V (x;ω) ≥ 0 if ∀x ∈ Ω\{0} & ∀ω. (18)

From (17) and (18), we have

V (x;ωNa) > min
z∈Ω

V (z;ωNa) = 0, ∀x ∈ Ω\{0}. (19)

From (18) and (19), we infer that the value function V (x;ωNa)
is positive definite. Then, according to (17), V (x;ωNa) is
a Lyapunov function for the closed-loop dynamics obtained
from (1) when policy π(x; θNa) is used. Therefore, the policy
π(x; θNa) ∈ Ψ(Ω) for the system (1) on Ω [40], that is, it is a
stabilizing admissible policy.

At this point, Algorithm 3 enters Phase 2. According to (4),
one has

min
ω

Lc(ω, θ
Na) = min

ω
Ex∼dx

[
H(x, ω, θNa)2

]
= 0.

So, from Assumption 2 and Lemma 1, we can always findωNa+1

by continuously applying (12), such that

H(x, ωNa , θNa) ≤ H(x, ωNa+1, θNa) ≤ 0, ∀x ∈ Ω.

Again, from Lemma 1, there always ∃θ#, such that

H(x, ωNa+1, θ#) = min
θ

H(x, ωNa+1, θ), ∀x ∈ Ω.

Since

min
θ

La(ω
Na+1, θ) ≥ Ex∼dx

[
min
θ

H(x, ωNa+1, θ)

]
,

we have

La(ω
Na+1, θ#) = min

θ
La(ω

Na+1, θ)

= Ex∼dx

[
min
θ

H(x, ωNa+1, θ)

]
.
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Utilizing the fact that the global minima ofLa(ω
Na+1, θ) can be

obtained, Hamiltonian H(x, ωNa+1, θ) can be taken to global
minimum for all x ∈ Ω by minimizing over θ. Then, we can also
find θNa+1 through (13), such that

H
(
x, ωNa+1, θNa+1

) ≤ H
(
x, ωNa+1, θNa

) ≤ 0, ∀x ∈ Ω.

This implies that like the case with V (x;ωNa), V (x;ωNa+1) is
also a Lyapunov function. So, π(x; θNa+1) ∈ Ψ(Ω). Applying
this for all subsequent time steps, V (x;ωi) is a Lyapunov
function for ∀i ≥ Na, and it is obvious that

H(x, ωi, θi) ≤ H(x, ωi+1, θi) ≤ 0, ∀i ≥ Na & ∀x ∈ Ω,
(20)

and

π(x; θi) ∈ Ψ(Ω), ∀i ≥ Na. (21)

Thus, we have proved that starting from any initial policy, the
RCTAC algorithm in Algorithm 3 converges to an admissible
policy. As claimed previously, this relaxes the requirement A1,
which is typical for most other ADP algorithms. �

We now present our main result, which shows that the value
NN V (x;ω) and policy NN π(x; θ) converge to optimum uni-
formly by applying Algorithm 3.

Definition 2: (Uniform Convergence). A function sequence
{fn} converges uniformly to f on a set K if ∀ε > 0, ∃N(ε) ∈
Z
+, s.t. ∀n > N , supx∈K |fn(x)− f(x)| < ε.
Theorem 1: For arbitrary initial value network V (x;ω0) and

policy networkπ(x; θ0), where all the activation functionsσV (·)
and biases bV of the value network are set to σV (0) = 0 and
bV (·) ≡ 0, and the output layer activation function σVout also
satisfies σVout(·) ≥ 0, if these two NNs are tunned with Algo-
rithm 3, Vωi(x) → V �(x), πθi(x) → π�(x) uniformly on Ω as
i → ∞.

Proof: From Lemma 3, it can be shown by induction that
the policy π(x; θi) ∈ Ψ(Ω) for system (1) on Ω when i ≥ Na.
Furthermore, according to (16) and (20), given policy π(x; θi),
we get

dV (x;ωi)

dt
≤ dV (x;ωi+1)

dt
≤ 0, ∀x ∈ Ω & i ≥ Na. (22)

From Newton-Leibniz formula,

Vω(x(t)) = Vω(x(∞))−
∫ ∞

t

dVω(x(τ))

dτ
dτ. (23)

According to (18) and (21),

Vω(x(∞)) = Vω(0) = 0, i ≥ Na & ∀ω. (24)

So, from (18), (22), (23) and (24), we have

0 ≤ V (x;ωi+1) ≤ V (x;ωi), ∀x ∈ Ω & i ≥ Na. (25)

As such, V (x;ωi) is pointwise convergent as i goes to ∞.
One can write limi→∞ V (x;ωi) = V (x;ω∞). Then, the com-
pactness of Ω directly leads to uniform convergence by Dini’s
theorem [41].

Next, from Definition 2, it is not hard to show that

lim
i→∞

sup
x∈Ω

|V (x;ωi)− V (x;ωi+1)| = 0.

Furthermore, since

V (x;ωi)− V (x;ωi+1)

=

∫ ∞

t

d(V (x(τ);ωi+1)− V (x(τ);ωi))

dτ
dτ,

=

∫ ∞

t

[
H(x(τ), ωi+1, θi)−H(x(τ), ωi, θi)

]
dτ,

we have

lim
i→∞

sup
x∈Ω

|H(x, ωi+1, θi)−H(x, ωi, θi)| = 0. (26)

From Lemma 1, (4) and (21),

min
ω

Lc(ω, θ
i) = min

ω
Ex∼dx

[
H(x, ω, θi)2

]
= 0, ∀i ≥ Na.

Since ωi+1 is obtained by minimizing Lc(ω
i, θi) using (12),

according to (26), it is true that

lim
i→∞

H(x, ωi, θi) = lim
i→∞

H(x, ωi+1, θi) = 0, ∀x ∈ Ω. (27)

Therefore, V (x;ω∞) is the solution of the Lyapunov (4) when
a policy π(x; θ∞) is given, and it leads to that

Vω∞(x) = V πθ∞ (x).

The policy π(x; θi) ∈ Ψ(Ω) for i ≥ Na, so the generated
state trajectory is unique due to the locally Lipschitz continuity
of the dynamics [18]. Since V (x;ωi) converges uniformly to
V (x;ω∞), its obvious that the system trajectory converges for all
x ∈ Ω. Therefore,π(x; θi) also converges uniformly toπ(x; θ∞)
on Ω. Since θi+1 is obtained by minimizing La(ω

i+1, θi) using
(13), it is obvious from (27) that

lim
i→∞

La(ω
i+1, θi+1) = lim

i→∞
La(ω

i+1, θi) = 0, (28)

which implies that

lim
i→∞

min
θ

H(x, ωi, θ) = 0, ∀x ∈ Ω. (29)

From (27), (29), and Lemma 2, one has limi→∞ V (x;ωi) =
V �(x) and limi→∞ π(x; θi) = π�(x). Therefore, one can con-
clude that Vωi(x) goes to V �(x) and πθi(x) goes to π�(x)
uniformly on Ω as i → ∞, which means the global optimal
solution is obtained. �

This demonstrates that the RCTAC algorithm uniformly con-
verges to the optimal value function V �(x) and the optimal
policy π�(x).

Remark 1: The warm-up phase of RCTAC is developed to
find the initial admissible policy, whose purpose is akin to that
of the relaxing initial condition of discrete-time systems [42].
The difference is that the latter needs to repeatedly select an
initial positive value function until the initial admissible policy
can be constructed. It is proved that under mild restrictions of
the activation functions of the value function, given any initial
policy, the warm-up phase can converge to an admissible policy
by continuously minimizing the square of the Hamiltonian.

Remark 2: According to the implementation process (12) and
(13) of the proposed RCTAC algorithm, the dynamic f(x, u)

can be any analytic function such that ∂f(x,u)
∂u is available. As
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Fig. 1. API and RCTAC algorithm framework diagram.

a result, RCTAC can be applied to any nonlinear system with
non-affine and bounded control inputs, unlike [12], [19], [23]
which are only applicable to systems with affine control inputs
due to the requirement for an analytical expression of the control
policy using the value function. Control constraints can be easily
incorporated by using a saturated activation function (such as
tanh(·)) at the output of the policy network.

Remark 3: Since the state x is continuous, it is intractable
to check the value of H(x, ω, θ) for every x ∈ Ω. Therefore,
in practical applications, we usually use the expected value
of H(x, ω, θ) to judge whether each termination condition in
Algorithm 3 is satisfied. So, the RCTAC algorithm can also be
formulated as Algorithm 4. Fig. 1 shows the frameworks of API
Algorithm 2 and RCTAC Algorithm 4.

It is worth noting that for Algorithm 4, sometimes skipping
Phase 1 and directly using Phase 2 can also obtain a nearly
optimal policy. This is because even if La(ω

i, θi) ≥ ε, Phase 2
would continuously make La(ω

i, θi) approach a non-positive
number by alternately using (12) to optimize V (x;ω) and using
(13) to optimize π(x; θ). Note that the Phase 2 of Algorithm
4 is not a CT version of the Value Iteration (VI) method. As
Lee et al. pointed out in [12], all VI methods for CT optimal
control can be deemed as a variant of integral VI. The integral
ADP methods, such as integral VI, integral PI and integral
generalized PI, iteratively perform policy evaluation and policy
improvement updates relying on the running cost during a finite
time interval [12], which is clearly different from Algorithm
3 and Algorithm 4. Besides, these integral ADP methods are
usually subject to input-affine systems since these methods
require that the optimal policy can be directly represented by

Algorithm 4: RCTAC algorithm: Tractable Relaxation.

Initialize arbitrary θ0 and ω0

Choose the appropriate learning rates α, αω and αθ

Given any small positive number ε and set i = 0
Phase 1: Warm-up

while La(ω
i, θi) ≥ ε do

Update ω and θ using (14)
i = i+ 1

end while
Phase 2: PI with relaxed termination conditions

while Ex∼dx
|Vωi(x)− Vωi−1(x)| ≥ ε do

Update wi+1 using (12)
Update θi+1 using (13)
i = i+ 1

end while

the value function, which means that the minimum point of the
Hamilton function could be solved analytically when the value
function is given. This manner is difficult to extend to input
non-affine systems.

Remark 4: In the previous analysis, the utility function l(x, u)
is limited to positive definite functions, i.e., the equilibrium state
(denoted by xe) of the system must be xe = 0. If we take x− xe

as the input of value network V (x;ω), the RCTAC Algorithm 4
can be extended to problems with non-zero xe, where l(x, u) =
0 only if x = xe & u = 0. The corresponding convergence and
optimality analysis is similar to the problem of xe = 0.

Remark 5: According to Lemma 3, all activation functionsσV

and biases bV of V (x;ω) are set to σV (0) = 0 and bV (·) ≡ 0 to
ensure V (xe;ω) ≡ 0. To remove these restrictions for value net-
works, we propose another effective method that drivesV (xe;ω)
to gradually approach 0 by adding an equilibrium term to the
critic loss function (10)

Lc
′(ω, θ) = Ex∼dx

[
H(x, ω, θ)2

]
+ ηV (xe;ω)

2,

where η balances the importance of the Hamiltonian term and
the equilibrium term.

IV. RESULTS

To verify the proposed RCTAC Algorithm 4, we offer two
numerical examples, one with linear dynamics, and the other
one with a nonlinear input non-affine system (the vehicle path-
tracking control). We apply Algorithm 4 and Algorithm 2 to find
the optimal solutions for these two systems. Results indicate that
our algorithm outperforms Algorithm 2 in both cases.

A. Example I: Linear Time Invariant System

1) Description: Consider the CT aircraft plant control prob-
lem used in [20], [21], [43], which can be formulated as

min
u

∫ ∞

0

(x�Qx+ u�Ru)dt
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Fig. 2. RCTAC vs API performance comparison: Example I. Solid lines and
shaded regions correspond to average values and 95% confidence interval over
20 runs. One iteration corresponds to one NN update.

s.t. ẋ =

⎡
⎢⎣−1.01887 0.90506 −0.00215

0.82225 −1.07741 −0.17555

0 0 −1

⎤
⎥⎦ x +

⎡
⎢⎣00
1

⎤
⎥⎦ u,

where Q and R are identity matrices of proper dimensions. For
this linear case, the optimal analytic policyπ�(x) = 0.1352x1 +
0.1501x2 − 0.4329x3 and the optimal value function V �(x) =
x�Px can be easily found by solving the algebraic Riccati
equation, where

P =

⎡
⎣ 1.4245 1.1682 −0.1352

1.1682 1.4349 −0.1501
−0.1352 −0.1501 0.4329

⎤
⎦ .

2) Algorithm Details: This system is very special, in par-
ticular, if the weights of the policy NN are randomly initialized
around 0, which is a very common initialization method, then the
initialized policy π(x; θ0) ∈ Ψ(Ω). Therefore, to compare the
learning speed of Algorithm 2 and Algorithm 4, both algorithms
are implemented to find the nearly optimal policy and value
function. We approximate the value function and policy using
3-layer fully-connected NNs. Each NN contains 2 hidden layers
with 256 units per layer, activated by exponential linear units
(ELUs). The outputs of the value and policy network areV (x;ω)
and π(x; θ), using softplus unit and linear unit as activation
functions, respectively. The training set consists of 256 states
which are randomly chosen from the compact set Ω at each
iteration. We set the stepsizes αω and αθ to 0.01 and employ
Adam for NN optimization.

3) Result: Fig. 2 displays the learning accuracy of the policy
and value function at each iteration, measured by

eπ = Ex∈X0

⎡
⎣ |π�(x)− πθ(x)|
max
x∈X0

π�(x)− min
x∈X0

π�(x)

⎤
⎦ ,

TABLE I
LIST OF STATE AND INPUT

TABLE II
VEHICLE PARAMETERS

eV = Ex∈X0

⎡
⎣ |V �(x)− Vω(x)|
max
x∈X0

V �(x)− min
x∈X0

V �(x)

⎤
⎦ ,

where there are 500 states in the test set X0, which are randomly
chosen from Ω. We also draw violin plots in different iterations
to show the precision distribution and 4-quartiles.

It is clear from Fig. 2 that both two algorithms can make
the value and policy network approximation errors (eπ and
eV ) fall with iteration. And after 105 iterations, both errors of
Algorithm 4 are less than 0.4%. This indicates that Algorithm 4
has the ability to converge value function and policy to nearly
optimal solutions. In addition, the t-test results in Fig. 2 show
that both eπ and eV of Algorithm 4 are significantly smaller than
those of Algorithm 2 (p < 0.001) under the same number of iter-
ations. From the perspective of convergence speed, Algorithm 4
requires only about 104 iterations to make both approximation
errors less than 0.03, while Algorithm 2 requires around 105

steps. Based on this, Algorithm 4 is about 10 times faster than
Algorithm 2.

Fig. 3 shows the simulation results of the learned policy
(after 105 iterations) over 20 runs. It is obvious that policies
learned by RCTAC perform much better than API. The curves
of state, control input, and cost generated by RCTAC are almost
consistent with the optimal solution. In summary, Algorithm 4 is
able to attain nearly optimal solutions and enjoys a significantly
faster convergence speed compared to Algorithm 2.

B. Example II: Nonlinear and Input Non-Affine System

1) Description: Consider the vehicle path tracking task with
nonlinear and input non-affine vehicle system derived in [44],
[45]. The desired velocity is 12 m/s and the desired tracking path
is shown in Fig. 5. Table I provides a detailed description of the
states and inputs for this task, and Table II lists the vehicular
parameters. The vehicle’s movement is controlled by a bounded
actuator, where ax ∈ [−3, 3]m/s2 and δ ∈ [−0.35, 0.35] rad.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 24,2024 at 01:49:36 UTC from IEEE Xplore.  Restrictions apply. 



DUAN et al.: RELAXED ACTOR-CRITIC WITH CONVERGENCE GUARANTEES FOR CONTINUOUS-TIME OPTIMAL CONTROL 3307

Fig. 3. Simulation results of different methods over 20 runs: Example I.
(a) State trajectory. (b) Value function and control input.

The dynamics of the vehicle is given by

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

vy

r

vx

φ

y

⎤
⎥⎥⎥⎥⎥⎥⎦
, u =

[
δ

ax

]
, f(x, u) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Fyr+Fyf cos δ
m − vxr

−bFyr+aFyf cos δ
Iz

vyr + ax − Fyf sin δ
m

r

vy cosφ+ vx sinφ

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where Fy‡ represents the lateral tire force and the subscript ‡ ∈
{f,r} corresponds to the front or rear wheels. It is calculated
using the Fiala model:

Fy‡ = − sgn(α‡)min {|μ‡Fz‡| ,∣∣∣∣∣tan(α‡)C‡

(
1 +

C2
‡ (tanα‡)2

27(μ‡Fz‡)2
− C‡ |tanα‡|

3μ‡Fz‡

)∣∣∣∣∣
}
,

where Fz‡ denotes the tire load, μ‡ denotes the lateral friction
coefficient, and α‡ denotes the tire slip angle with

αf = −δ + arctan

(
vy + ar

vx

)
, αr = arctan

(
vy − br

vx

)
.

The lateral friction coefficient is estimated by:

μ‡ =

√
(μFz‡)2 − F 2

x‡
Fz‡

,

where Fx‡ represents the longitudinal tire force, expressed as

Fxf =

{
0, ax ≥ 0
max

2 , ax < 0
, Fxr =

{
max, ax ≥ 0
max

2 , ax < 0
.

The vertical loads on the front and rear wheels are approximated
by

Fzf =
b

a+ b
mg, Fzr =

a

a+ b
mg.

The control objective is to minimize output tracking errors,
which is formulated as

min
u

∫ ∞

0

{
0.4(vx − 12)2 + 80y2 + u�

[
280 0
0 0.3

]
u

}
dt

subject to ẋ = f(x, u).

2) Algorithm Details: We employ 6-layer fully-connected
NNs to represent Vω and πθ, and the state input layer of each
NN is followed by 5 fully-connected hidden layers, 32 units per
layer. The activation function selection for the policy network is
similar to that in Example I, with the exception that the output
layer is activated by tanh(·) with two units, multiplied by the
vector [0.35, 3] to accommodate the constrained control inputs.
The training set consists of the current states of 256 parallel
independent vehicles with different initial states, thereby ob-
taining a more realistic state distribution. We use Adam method
to update two NNs, while the learning rates of value network and
policy network are set to 8× 10−4 and 2× 10−4, respectively.
Besides, we use η = 0.1 to trade off the Hamiltonian term and
the equilibrium term of the critic loss function (Remark 5).

3) Result: Fig. 4 shows the evolution of the average absolute
Hamiltonian |H| of 256 random states and the training perfor-
mance. The policy performance at each iteration is calculated
by the cumulative running cost in 20 s time domain

C =

∫ 20

0

l(x(τ), u(τ))dτ,

where the initial state is randomly selected for each run. Since
the initial policy is not admissible, i.e., π(x; θ0) /∈ Ψ(Ω), Al-
gorithm 2 can never make |H| close to 0, hence the terminal
condition of policy evaluation can never be satisfied. Therefore,
the finite horizon costC has no change during the entire learning
process, i.e., Algorithm 2 can never converge to an admissible
policy if π(x; θ0) /∈ Ψ(Ω).

On the other hand, |H| of Algorithm 4 can gradually converge
to 0, while the finite horizon cost C is also reduced to a small
value during the learning process. Fig. 5 shows the control inputs
and state trajectory controlled by the learned RCTAC policy. It
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Fig. 4. RCTAC vs API performance comparison over 20 runs: Example II.

Fig. 5. Simulation results: Example II. (a) Control inputs. (b) State trajectory.
(c) Vehicle trajectory.

can quickly guide the vehicle to the desired state, taking less
than 0.5 s for the case in Fig. 5. The results of Example II
show that Algorithm 4 can solve the CT dynamic optimal control
problem for general nonlinear and input non-affine CT systems
with saturated actuators and handle inadmissible initial policies.

Fig. 6. Real vehicle test pipeline.

In conclusion, these two examples demonstrate that the pro-
posed RCTAC method is able to learn the nearly optimal policy
and value function for general nonlinear and input non-affine
CT systems without reliance on initial admissible policy. In
addition, if the initial policyπ(x; θ0) ∈ Ψ(Ω), the learning speed
of Algorithm 4 is also faster than that of Algorithm 2.

V. EXPERIMENTAL VALIDATION

In this section, we demonstrate the practical effectiveness of
RCTAC by using the real-world path-tracking task [46], [47].
The experiment pipeline is shown in Fig. 6. The test vehicle is
GEELY Geometry C, which is equipped with a driving mode
button, enabling it to switch between manual driving mode and
automatic driving mode. We deploy the learned policy on the
onboard industrial personal computer (IPC) with a 3.60 GHz
Intel Core i7-7700 CPU. The deployed policy network is trained
by the proposed RCTAC algorithm, where the expected velocity
is set to 15 km/h, while other vehicle and algorithm parame-
ters are consistent with Example II in Section IV-B. Provided
with an ASENSING INS570D high-precision vehicle-mounted
positioning system, the state of the vehicle can be accurately
measured. After receiving the vehicle state information, the IPC
records and calculates control instructions every 80 ms, and
sends the desired front wheel angle and longitudinal acceleration
through the Controller Area Network (CAN), so as to realize the
lateral and longitudinal control of the vehicle.

The control inputs and state trajectory controlled by the
deployed RCTAC policy are shown in Fig. 7. From Fig. 7(a),
there exists a system response delay of about 0.5 s between the
expected and the actual control signal. Besides, the actual ac-
celeration signals are noisy due to hardware limitations. Despite
these difficulties, our policy still makes the vehicle track the
desired speed and trajectory smoothly and well (Fig. 7(a) and
(b)).

For comparison, model predictive control (MPC) with a pre-
diction time domain of 20 steps is also deployed on the IPC
to carry out practical experiments [48], where the well-known
nonlinear programs solver IPOPT [49] is employed to solve the
constructed MPC problem. The average results of 10 indepen-
dent experiments are shown in Table III. The root mean squared
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Fig. 7. Experiment results: (a) Control inputs. The expected value corresponds
to the policy output. (b) State trajectory. (c) Vehicle trajectory.

TABLE III
COMPARISON RESULTS

error (RMSE) of the heading angle between vehicle & trajectory
and that of the distance between CG & trajectory

φRMSE =

√√√√ 1

m

m∑
k=1

φ2
k, yRMSE =

√√√√ 1

m

m∑
k=1

y2k,

are calculated to quantify the tracking performance. It can be
found that RCTAC matches MPC in terms of tracking perfor-
mance. Moreover, RCTAC shows great advantages in online

decision-making efficiency, whose average single-step decision
time is 91.17% less than that of MPC.

In conclusion, the vehicle experiment verifies the control ef-
fect of the proposed RCTAC algorithm in practical applications.
It performs as well as MPC in our path-tracking task. Moreover,
the way of offline training and online application makes the on-
line calculation time of RCTAC much shorter than that of online
optimization methods, such as MPC. This property is of signifi-
cant importance for systems with limited computing resources.

VI. CONCLUSION

The paper proposed the relaxed continuous-time actor-critic
(RCTAC) Algorithm 4, along with the IEEEproof of conver-
gence and optimality, for solving nearly optimal control prob-
lems of general nonlinear CT systems with known dynamics.
The proposed algorithm can circumvent the requirements of “ad-
missibility” and input-affine system dynamics (described in A1
and A2 of Introduction), quintessential to previously proposed
counterpart algorithms. As a result, given an arbitrary initial
policy, the RCTAC algorithm is shown to eventually converge
to a nearly optimal policy, even for general nonlinear input
non-affine system dynamics. The convergence and optimality
are mathematically proven by using detailed Lyapunov analysis.
We further demonstrate the efficacy and theoretical accuracy
of our algorithm via two numerical examples, which yields
a faster learning speed of the nearly optimal policy starting
from an admissible initialization, as compared to the traditional
approximate policy iteration (API) algorithm (Algorithm 2). In
addition, a real-world path-tracking experiment is conducted to
verify the practical performance of our method. Results show
that compared with the MPC method, RCTAC has reduced the
single-step decision time by 91.17% without losing tracking per-
formance. This indicates that our method has the potential to be
applied in practical systems with limited computing resources.
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