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Relaxed Policy Iteration Algorithm for Nonlinear Zero-Sum
Games With Application to H-Infinity Control

Jie Li , Shengbo Eben Li , Jingliang Duan , Yao Lyu , Wenjun Zou , Yang Guan ,
and Yuming Yin

Abstract—Though policy evaluation error profoundly affects the
direction of policy optimization and the convergence property, it is
usually ignored in policy iteration methods. This work incorporates
the practical inexact policy evaluation into a simultaneous policy
update paradigm to reach the Nash equilibrium of the nonlinear
zero-sum games. In the proposed algorithm, the restriction of
precise policy evaluation is removed by bounded evaluation er-
ror characterized by Hamiltonian without sacrificing convergence
guarantees. By exploiting Fréchet differential, the practical itera-
tive process of value function with estimation error is converted
into the Newton’s method with variable steps, which are inversely
proportional to evaluation errors. Accordingly, we construct a
monotone scalar sequence that shares the same Newton’s method
with the value sequence to bound the error of the value function,
which enjoys an exponential convergence rate. Numerical results
show its convergence in affine systems, and the potential to cope
with general nonlinear plants.

Index Terms—Hamilton–Jacobi–Isaacs (HJI) equation, Newton’s
method, policy iteration, zero-sum game.

I. INTRODUCTION

Zero-sum games have attracted much attention in the field of control
in the past few years. The intention of a zero-sum game is to solve
Nash equilibria, at which each player loses what the other gains in
its performance [1]. H∞ control problems are typical zero-sum game
problems from the view of minimax optimization, where external
disturbances can be viewed as opponent players [1], [2]. The key to
coping with nonlinear dynamics is to find the solution to the Hamilton–
Jacobi–Isaacs (HJI) equation [3], [4], [5], which is a nonlinear partial
differential equation that is hard to solve analytically.

Approximate dynamic programming (ADP) is a class of evolving
computational methods that learn control policies via interacting with
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the environment [6]. Among all variants of ADP methods, policy itera-
tion is the most commonly used because of its theoretical completeness
[7]. It includes two alternating steps of policy evaluation and policy
improvement, where the former seeks to find the value function of the
current control policy, and the latter optimizes a better policy guided by
the learned value function. Recently, policy iteration has been applied
to solving the HJI equation of nonlinear zero-sum games orH∞ control
problems [8], [9]. Abu-Khalaf et al. [10], [11] extended policy iteration
to two-player zero-sum games. A two-loop policy iteration method with
uniform convergence guarantees was developed, where the disturbance
policy and its matching value function were approximately updated
with neural networks in the inner loop [11], and the control policy
was updated in the outer loop asynchronously. For simplification,
a simultaneous policy update paradigm was then developed, which
involved only one iterative loop [12], [13], and employed three neural
networks to implement the proposed model-free off-policy algorithm
[13]. Afterward, parameter tuning algorithms with only one critic
network were designed to further reduce the computational burden and
eliminate approximation errors in policy networks [14], [15].

In policy evaluation, attaining an exact closed-form solution remains
difficult [11], [16]. For polynomial systems, one approach is to use an
auxiliary optimization problem to find suboptimal solutions through
semidefinite programming. In practice, another common scheme intro-
duces neural networks with basis functions [14] or multilayer percep-
tron (MLP) [17], [18] to estimate the exact solution. Gradient descent
can be employed to update the weights of hidden layers, but the value
function may not converge to its solution by performing finite gradient
steps in the application process [19]. The least squares method can
conveniently minimize the residual error of the basis function weights
[11], and a large number of basis functions, whose types are not easily
specified, are required to achieve minor approximation errors [12], [16].
Under the assumption that the value function is uniformly approxi-
mated, the convergence of algorithms can be obtained. The uniform
convergence of asynchronous methods is analyzed by proving that the
value sequence is monotonic [10, Th.3], [11, Th.1]. The simultaneous
policy update algorithm is demonstrated to be equivalent to finding a
fixed point in the Newton’s method, where the Kantorovtich’s theorem
assures convergence [12, Th.1], [13, Th.5]. The learned weights are
also proven to ultimately converge to a neighborhood of ideal weights
by the Lyapunov theory [14], [15], where the ultimate bound is related
to the reconstruction error of the approximator. However, few studies
have investigated the impact of policy evaluation errors caused by the
actual implementation of the algorithm on convergence rate and finite-
time analysis, which are also worth studying for efficient algorithm
development.

This work aims to explore whether policy iteration can tolerate
policy evaluation errors, and to prove that the alternate iterations as
a whole are still convergent. The main contributions of this article
are as follows. 1) We first establish the equivalence between relaxed
policy iteration with bounded policy evaluation error, described by the
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ratio of Hamiltonian, and the Newton’s method about value function,
with the step size being inversely proportional to the evaluation error.
This enables policy iteration to tolerate certain evaluation errors while
maintaining the overall convergence. 2) Next, we construct a scalar
sequence sharing the same Newton’s method with the value sequence
to give an upper error bound of the value function of the whole iterative
process. By deriving the convergence rate of the scalar sequence, the
error of value function is proven to decay exponentially with Newton
iterations, i.e., an ε-optimal solution can be obtained with a Newton
iteration complexity of O(log(ε−1)).

The rest of this article is organized as follows. In Section II, a de-
scription of the zero-sum game and its HJI equation is given. Section III
describes the proposed algorithm, whose convergence mechanism is
analyzed in Section IV. Simulation results are shown in Section V.
Finally, Section VI concludes this article.

II. PROBLEM DESCRIPTION

Consider an affine nonlinear plant with known dynamics

ẋ = f (x) + g (x)u+ k (x)w (1)

where x ∈ Ω ⊆ Rn is the state, u ∈ Rm and w ∈ Rq are control
input and external disturbance. f(x) ∈ Rn, g(x) ∈ Rn×m, and k(x) ∈
Rn×q are known continuous nonlinear functions defined in a state set
Ω containing the origin.

Define the performance index as

J (u,w)
Δ
=

∫ ∞
t

l (x, u,w) dτ (2)

where t is the initial time, l(x, u,w)
Δ
= xTQx+ uTRu− γ2wTw is

the utility function, Q ≥ 0 and R > 0 are weighting matrices, and γ
denotes the attenuation level. Assume that there exists an admissible
control policy such that the system is asymptotically stable and has a
finite performance.

For control policyu(x) and disturbance policyw(x), define the value
function as

V (x)
Δ
=

∫ ∞
t

(
xTQx+ uTRu− γ2wTw

)
dτ. (3)

Taking the partial derivative of t for the value function (3), one can
formulate an equation about Hamiltonian

H

(
x, u,w,

∂V (x)

∂x

)
Δ
= xTQx+ uTRu− γ2wTw

+
∂V (x)

∂xT
(f (x)+g (x)u+k (x)w) = 0

(4)

which is widely applied in algorithm design. The solution of the
differential equation (4) is the value function of policies.

The two-player zero-sum differential game is derived as

V ∗ (x) = J (u∗, w∗) = min
u

max
w

J (u,w) (5)

where V ∗(x) is the optimal value function or Nash value of the
zero-sum game, and J(u∗, w∗) is the optimal performance function.
Upon combining Nash condition and Isaacs’ condition, we will show
how to solve the given zero-sum game from the perspective of partial
differential equations.

Remark 1: The solvability of H∞ suboptimal control problem

‖Tzw‖2∞ = supw
‖z‖2

2

‖w‖2
2

< γ2 is equivalent to that of a zero-sum game

[1]. In H∞ control problems, z denotes the objective output, and 1/γ
represents the boundary of model uncertainty.

A. HJI Equation

The zero-sum differential game (5) may have no solution or multiple
solutions [20]. For simplicity, we assume that there exists a unique so-
lution. The well-known Nash condition provides a sufficient condition
for the uniqueness of the solution, requiring a saddle point [21], i.e.,

J (u∗, w) ≤ J (u∗, w∗) ≤ J (u,w∗) ∀u,w ∈ L2 [t , ∞) (6)

where u∗ and w∗ are at equilibrium. Both players have no motivation
to change to make their performance better. A necessary condition
for Nash condition is Isaacs’ condition [21], which can be seen as an
extension of Pontryagin maximum principle, i.e.,

min
u

max
w

H

(
x, u,w,

∂V ∗ (x)
∂x

)
=max

w
min
u
H

(
x, u,w,

∂V ∗ (x)
∂x

)
.

(7)
Applying two stationarity conditions ∂H/∂u = 0 and ∂H/∂w =

0 to the Hamiltonian H
(
x, u,w, ∂V

∗(x)
∂x

)
gives

u = arg min
u
H

(
x, u,w,

∂V ∗ (x)
∂x

)
= −1

2
R−1gT (x)

∂V ∗ (x)
∂x

(8)

w = arg max
w

H

(
x, u,w,

∂V ∗ (x)
∂x

)
=

1

2γ2
kT (x)

∂V ∗ (x)
∂x

.

(9)

Substituting them into (4) yields the HJI equation

G (V ∗) Δ
= xTQx+

∂V ∗ (x)
∂xT

f (x)

− 1

4

∂V ∗ (x)
∂xT

g (x)R−1gT (x)
∂V ∗ (x)
∂x

+
1

4γ2

∂V ∗ (x)
∂xT

k (x) kT (x)
∂V ∗ (x)
∂x

= 0 (10)

which is a nonlinear partial differential equation. The boundary condi-
tion is V ∗(xe) = 0, where xe is an equilibrium state, usually chosen as
a zero vector in regulator problems.

On the other hand, assume that the dynamics (1) is zero-state ob-
servable, and suppose that the solution V ∗(x) of the HJI equation (10)
is smooth positive semidefinite. Then, the derived control policy and
disturbance policy are at Nash equilibrium [21]. Thus, Isaacs’ condition
can be a sufficient condition for Nash condition under mild hypotheses.
The HJI equation (10) can be rewritten as a formulation of Hamiltonian

min
u

max
w

H

(
x, u,w,

∂V ∗ (x)
∂x

)
= 0. (11)

So far, the solving process of the zero-sum game (5) has been con-
verted into that of a partial differential equation. However, its analytical
solution is difficult to find. Therefore, in the following section, we will
introduce some numerical methods to solve the derived HJI equation
(11).

Remark 2: Conditions for the existence of smooth positive semidef-
inite solution of the HJI equation (10) have been provided in [4], [5].
The results of this article are also based on regularity assumptions made
in [4] and [5].

B. Existing Policy Iteration Algorithms

Policy iteration is a numerical method widely applied in ADP [6].
It involves alternating iterations between policy evaluation and policy
improvement. In the policy evaluation step, the value functionV k+1(x)
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is updated by solving the differential equation

H

(
x, uk, wk,

∂V k+1 (x)

∂x

)
= l
(
x, uk, wk

)

+
∂V k+1 (x)

∂xT
(
f (x) + g (x)uk + k (x)wk

)
= 0 (12)

which makes policies uk and wk no longer greedy. In policy improve-
ment steps, policies uk+1 and wk+1 are improved by minimizing or
maximizing the abovementioned Hamiltonian

uk+1 = −1

2
R−1gT (x)

∂V k+1 (x)

∂x
(13)

wk+1 =
1

2γ2
kT (x)

∂V k+1 (x)

∂x
(14)

making the value function incorrect for the updated policies.
It is a commonly employed algorithm framework to iterate the above-

mentioned two steps until the value function meets some termination
conditions, e.g., |V k+1(x)− V k(x)| ≤ ε. The simultaneous policy
update paradigm [12] has been proven to have a relationship with the
Newton’s method.

Lemma 1 [12]: Consider a Banach space V ⊂ {V (x)|V (x) :
Ω→ R, V (0) = 0} equipped with a norm ‖ · ‖Ω. With the definition
of Gâteaux derivative, the Gâteaux and Fréchet differential ofG(V ) at
V can be derived as

G′ (V )W =
∂W

∂xT
f − 1

2

∂W

∂xT
gR−1gT

∂V

∂x

+
1

2γ2

∂W

∂xT
kkT

∂V

∂x
. (15)

Then, the iteration process (12)–(14) is equivalent to the following
Newton’s method

V k+1 = V k − [G′ (V k)]−1G (V k) . (16)

The transformation of the Newton’s method is valid only if the value
function is uniformly approximated in policy evaluation [12, Th.1].
Besides, from the global point of view, policy evaluation errors bring
mismatch and confusion to the iterative process. Not only is the updated
value function incorrect for both policies, but policies are no longer
optimal. Nevertheless, few studies have explored the effect of evaluation
errors caused by calculation in practice, such as finite gradient steps, on
algorithm convergence. In the following section, the evaluation error
will be directly incorporated into the algorithm design.

III. RELAXED POLICY ITERATION ALGORITHM

In this section, we will introduce relaxed policy iteration, which can
tolerate evaluation errors while maintaining the overall convergence.
First, an easy-to-implement termination condition of policy evaluation
is developed. Then, the intuitive understanding of the proposed algo-
rithm will be presented.

Neural networks with polynomial or MLP can be used to approx-
imate the value function V (x;ω), denoted as the critic network with
weight ω. Given the improved policies uk and wk, the value function
V (x;ωk+1) will be updated based on the approximated Hamiltonian

H

(
x, uk, wk,

∂V
(
x;ωk+1

)
∂x

)
= l

(
x, uk, wk

)

+
∂V
(
x;ωk+1

)
∂xT

(
f (x) + g (x)uk + k (x)wk

)
. (17)

Fig. 1. Relaxed policy iteration algorithm.

In the extreme case, when there is no change in the value function
V (x;ωk+1), the Hamiltonian (17) remains the same. Ideally, the up-
dated value function makes the Hamiltonian equal to zero. Actually,
due to finite computation and limited approximation abilities of neural
networks, the parameterized value function has residual errors, making
it difficult for the Hamiltonian to be precisely zero. Between extreme
and ideal cases, the ratio of Hamiltonian provides a practical relaxation
and quantitative assessment of accuracy for policy evaluation

∣∣∣∣∣H
(
x, uk, wk,

∂V
(
x;ωk+1

)
∂x

)∣∣∣∣∣
≤ (1− αk)

∣∣∣∣∣H
(
x, uk, wk,

∂V
(
x;ωk

)
∂x

)∣∣∣∣∣ (18)

where αk ∈ (0, 1] characterizes the degree of relaxation. Note that
αk is strictly greater than 0, which avoids the above extreme case
of invariant Hamiltonian and stagnant learning. When αk gradually
approaches 1 from the negative direction, the right-hand side of the
abovementioned inequality will tend to 0, and the policy will be
evaluated more and more accurately. Therefore, the update of the value
function can tolerate certain errors. In the theoretical analysis of the
following section, we will see αk exactly controls the step size of each
Newton iteration.

During implementation, policy evaluation is performed by repeat-
edly applying gradient descent, such as Adam method [19], to an over-
parameterized critic network to find such a value function V (x;ωk+1).
In order to satisfy the persistency of excitation condition [22], parallel
agents are employed to explore different parts of state space to improve
the diversity of the training data. Besides, policy improvement directly
applies the closed-form expressions shown in (13) and (14) to the
affine system. Note that the algorithm can be generalized to other cost
functions than quadratic functions as long as an analytical solution to
the optimal policy is available. The pseudocode of the offline algorithm
is shown in Algorithm 1, and the corresponding procedure is presented
in Fig. 1.

Remark 3: Excessive relaxation leads to slow convergence of the
algorithm, especially for linear systems, since existing least squares
methods can yield relatively accurate quadratic value functions. On the
other hand, deficient relaxation requires extra gradient steps to improve
the accuracy of policy evaluation and introduce computational burden.
Therefore, the degree of relaxation balances the rate of convergence
and the total gradient steps applied in the policy evaluation process.

Remark 4: Initial admissible control policy is also required. It can
be guaranteed if the Hamiltonian of the initial value function, found by
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Algorithm 1: Relaxed Policy Iteration (RPI).

Initialization: Initial value function V (x;ω0).
Parameters: Learning rate of value function is λω , step size of
Newton’s method is αk, stopping criterion is ε > 0.

0. Generate data by applying control policy uk and disturbance
policy wk to the dynamic system (1).

1. Update the value function via gradient descent

ω ← ω − λω
∂
∣
∣H
(
x,uk,wk,

∂V (x;ω)
∂x

)∣∣
∂ω

,
and output V (x;ωk+1) until (18) holds.

2. Given the value function V (x;ωk+1), derive policies uk+1

and wk+1 by (13) and (14).
3. Set k ← k + 1. If H(x, uk, wk, V (x;ωk)) = 0 or
|V (x;ωk)− V (x;ωk−1)| ≤ ε, stop and output value
function V (x;ωk) and control policy uk, otherwise go back
to step 0 and continue.

numerical experiments or semidefinite programming based on the sum
of squares decomposition, satisfies the inequality condition [16].

The proposed method is inherently tolerant of evaluation errors
during practical implementation. In the next section, the convergence
guarantees and the relationship between convergence speed and evalu-
ation error will be introduced.

IV. CONVERGENCE ANALYSIS

In this section, we will show the convergence mechanism of the
proposed relaxed policy iteration algorithm. Although evaluation errors
introduce mismatch in the entire algorithm, Fréchet differential analysis
first shows that the overall algorithm is equivalent to a variant of the
Newton’s method with variable steps. Referring to the induction idea
in the Kantorovich’s theorem [23], a scalar iterative process is then
constructed to guarantee convergence. The auxiliary iteration shares the
same Newton’s method with the value function, and gives a boundary
to its error. Finally, the convergence speed is obtained by deriving
the upper error bound. The abovementioned proving process will be
presented in the following theorems. In light of existing studies, we
consider the Banach space defined in Lemma 1, and leverage the
mapping G : V → V defined in (10).

Theorem 1: Let V k+1(x) satisfy (18) in Algorithm 1. Then, the
iteration process can be transformed into the Newton’s method with
mixed step sizes αk and 2− αk.

Proof: Based on the Fréchet differential derived in (15), the updated
Hamiltonian in the termination condition (18) is

Hk+1 Δ
= G

(
V k
)−G′ (V k)V k +G′

(
V k
)
V k+1.

When the learning rate of gradient descent method is relatively small,
the updated value function V k+1(x) satisfies

∣∣G (V k)−G′ (V k)V k +G′
(
V k
)
V k+1

∣∣ = (1− αk) ∣∣G (V k)∣∣
where the variable step size αk ∈ (0, 1]. The updating process of the
value function can be denoted as the following two cases depending on
whether the sign of Hamiltonian changes or not

V k+1

=

{
T
(
V k
) Δ
= V k − αk[G′ (V k)]−1G (V k) , Hk+1G

(
V k
) ≥ 0

V k − (2− αk) [G′ (V k)]−1G (V k) , Hk+1G
(
V k
)
< 0

(19)

where the mixed step sizes αk ∈ (0, 1] and 2− αk ∈ [1, 2), and T (·)
can be regarded as the operator of the Newton’s method with variable
steps. �

The auxiliary iterative process introduced in the following derivation
with mixed step sizes αk and 2− αk can be employed to characterize
the convergence property of the transformed Newton’s method (19).
The convergence of the auxiliary iteration can be obtained by using
the symmetric point found by the step size αk = 2 to prove that the
range of oscillation shrinks. The iterative process with the step size αk

provides an intuitive and practical approximation for the convergence
rate of the iterative process with mixed step size. Prior to analyzing the
convergence of Newton’s method with variable steps αk, we have the
following lemmas.

Lemma 2: Consider a modified Newton’s method

V k+1= S
(
V k
) Δ
= V k−αΓ0G

(
V k
)
=V k − α[G′ (V 0

)]−1
G
(
V k
)

equipped with a specific policy iteration whose termination condition
(18) is fixed, where α ∈ (0, 1]. Assume that the related operator S ∈
C1(Ω0), where Ω0 = {V |‖V − V 0‖ < r} . Create an auxiliary scalar
iterative process φ ∈ C1[t0, t′]

tk+1 = φ
(
tk
) Δ
= tk + αc0ψ

(
tk
)
= tk − αψ (tk) /ψ′ (t0)

to find the root t∗ ∈ [t0, t′] of the equation ψ (t∗) = 0, where t′ =
t0 + r. Suppose the following conditions are satisfied:
1) Γ0 = [G′(V 0)]

−1 is a continuous linear operator;
2) c0 = − 1

ψ′(t0) > 0;

3) ‖Γ0G(V 0)‖ ≤ c0ψ(t0);
4) ‖Γ0G′′(V )‖ ≤ c0ψ′′(t) , if ‖V − V 0‖ ≤ t− t0 ≤ r.

Then, ‖V k+1 − V k‖ ≤ tk+1 − tk, and the value sequence gener-
ated by S has a limit V ∗ that satisfies V ∗ = S(V ∗).

Proof: According to condition 3)

0 ≤ ‖V 1 − V 0‖ = ‖ − αΓ0G
(
V 0
) ‖ ≤ αc0ψ (t0) = t1 − t0.

For the operator S, S ′ (V ) = I − αΓ0G′(V ), S ′′ (V ) =
−αΓ0G′′(V ). For the real function φ, φ′ (t) = 1 + αc0ψ′(t). Based
on condition 4), when ‖V − V 0‖ ≤ t− t0 ≤ r

0 ≤ ‖S ′ (V ) ‖ ≤ ‖S ′ (V )− S ′ (V 0
) ‖+ ‖S ′ (V 0

) ‖
=

∥∥∥∥
∫ V

V 0

−αΓ0G′′ (w) dw

∥∥∥∥+ ‖I − α[G′ (V 0
)]−1

G′
(
V 0
) ‖

≤
∫ t

t0
αc0ψ′′ (τ) dτ + ‖ (1− α) I‖ = φ′ (t) .

Note that φ′(t) ≥ 0, for tk−1 ≤ tk, we have tk = φ(tk−1) ≤
φ (tk) = tk+1 . So, the sequence {tk} generated by tk+1 = φ(tk)
is monotone. For t0 ≤ t∗, t1 = φ(t0) ≤ φ (t∗) = t∗ . By induction,
tk ≤ t∗ holds for all k ∈ N. Thus, limk→∞ tk = t∗ , and t∗ is the
smallest root of t = φ(t) in [t0, t′].

Based on ‖V 1 − V 0‖ ≤ t1 − t0, we know that V 1 ∈ Ω0. Suppose
that we have verified that V k ∈ Ω0 and ‖V k − V 0‖ ≤ tk − t0, k =
1, . . . , n, for the corresponding points in [V n−1, V n] and [tn−1, tn],
i.e., V = V n−1 + λ(V n − V n−1), t = tn−1 + λ(tn − tn−1), it can
be derived that ‖V − V 0‖ ≤ t− t0. Therefore, ‖S ′(V )‖ ≤ φ′(t). For
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k = n+ 1, we have

‖V n+1 − V n‖ = ‖S (V n)− S (V n−1) ‖ =

∥∥∥∥∥
∫ V n

V n−1
S ′ (w) dw

∥∥∥∥∥
≤
∫ tn

tn−1
φ′ (τ) dτ = φ (tn)− φ (tn−1) .

Moreover, V n+1 ∈ Ω0 since ‖V n+1 − V 0‖ ≤ tn+1 − t0 ≤ r.
Hence, ∀k ∈ N, V k ∈ Ω0 and ‖V k+1 − V k‖ ≤ tk+1 − tk. It can

be proven that {V k} generated by V k+1 = S(V k) is a Cauchy
sequence and has a limit V ∗ satisfying V ∗ = S(V ∗). �

Lemma 3: The value function V 1 and parallel scalar t1 are derived
by the Newton’s methods S and φ, where the step size is denoted as
α0. Then, ‖Γ0G(V 1)‖ ≤ c0ψ(t1).

Proof: According to Taylor’s expansion, we have

Γ0G
(
V 1
)
=
(
1−α0

)
Γ0G

(
V 0
)
+

∫ V 1

V 0

Γ0G′′ (V )
(
V 1 − V ) dV

c0ψ
(
t1
)
=
(
1−α0

)
c0ψ

(
t0
)
+

∫ t1

t0
c0ψ′′ (t)

(
t1 − t) dt.

Based on the boundary of the first value function V 1, for the corre-
sponding values in [V 0, V 1] and scalars in [t0, t1], i.e., V = V 0 +
λ(V 1 − V 0), t = t0 + λ(t1 − t0), it can be derived that ‖V − V 0‖ ≤
t− t0 ≤ r and ‖V 1 − V ‖ ≤ (1− λ) (t1 − t0) = t1 − t. Therefore,
conditions 3) and 4) can be employed

‖Γ0G
(
V 1
) ‖

≤ (1− α0
) ‖Γ0G

(
V 0
) ‖+ ∫ V 1

V 0

‖Γ0G′′ (V )
(
V 1 − V ) ‖dV

≤ (1− α0
)
c0ψ

(
t0
)
+

∫ t1

t0
c0ψ′′ (t)

(
t1 − t) dt = c0 ψ

(
t1
)

which completes the proof. �
Then, we will show the main results of theoretical analysis. The

following provides proof of convergence and derivation of convergence
rate for the overall iteration procedure.

Theorem 2: For the operator T (·) defined in (19), suppose all
conditions in Lemma 2 hold. Then, the Newton’s method with variable
steps converges to the root ofG (V ) = 0 , i.e., iterative value function
V k converges to the Nash value.

Proof: Consider the auxiliary Newton’s method of a scalar function
ψ, whose step size αk ∈ (0, 1] is variable

tk+1 = φ
(
tk
) Δ
= tk + αkckψ

(
tk
)
= tk − αkψ (tk) /ψ′ (tk)

where φ′ (t) = 1− αk + αkψ(t)ψ′′(t)/[ψ′(t)]2. Linking conditions
2) and 4), we have φ′(t) ≥ 0.

The first step of Newton’s method T (·) with variable steps is the
same as that of the modified Newton’s method S(·) in Lemma 2. So,
the value function V 1 is bounded, i.e., ‖V 1 − V 0‖ ≤ t1 − t0. It can be
proven by induction that the sequence {tk} generated by tk+1 = φ(tk)
is monotone, and limk→∞ tk = t∗ , where t∗ ∈ [t0, t′] is the root of
t = φ(t).

Now, we are ready to present by induction that all four conditions
about the first value function V 1 still hold. Consider the operator
Γ0G′(V 1)

‖I − Γ0G′
(
V 1
) ‖ =

∥∥∥∥∥Γ0

∫ V 1

V 0

G′′ (V ) dV

∥∥∥∥∥ ≤ c0ψ′ (t1)+ 1.

It can be calculated that ψ′(t1) < 0, so condition 2) can be derived
by induction. According to the Banach’s theorem [23], Γ0G′(V 1)

has an inverse U0 = [I − (I − Γ0G′(V 1))]
−1

= [Γ0G′(V 1)]
−1 , and

‖U0‖ ≤ 1
−c0ψ′(t1) = ψ′(t0)

ψ′(t1) = c1

c0
. Hence, there exists a continuous

linear operator

Γ1 =
[
G′
(
V 1
)]−1

= U0 Γ0

and according to Lemma 3

‖Γ1G
(
V 1
) ‖ ≤ ‖U0‖‖Γ0G

(
V 1
) ‖ ≤ c1ψ (t1) .

It means that conditions 1) and 3) can be derived by induction.
Note that if ‖V − V 1‖ ≤ t− t1, then ‖V − V 0‖ ≤ ‖V − V 1‖+
‖V 1 − V 0‖ ≤ t− t1 + t1 − t0 ≤ t− t0. Therefore, condition 4) can
be proven to hold:

‖Γ1G′′ (V ) ‖ ≤ ‖U0‖‖Γ0G′′ (V ) ‖ ≤ c1ψ′′ (t) .
Through mathematical induction ∀k ∈ N, we have

‖V k+1 − V k‖ ≤ tk+1 − tk.
Note that the sequence {tk} is increasing and bounded, so

‖V k − V ∗‖ ≤ t∗ − tk (20)

and the value function sequence {V k} also has a limit V ∗ =
limk→∞ V k , which is a root of G (V ∗) = 0. Therefore, the iterative
value function converges to the Nash value. �

Theorem 3: Consider a quadratic function in [t0, t′]

ψ (t)
Δ
= Kt2 − 2t+ 2η

where t0 = 0, t′ = 2η, t∗ = (1−√1− 2Kη) /K is the root of the
equation ψ (t) = 0, and 2Kη < 1. Assume that all the conditions in
Theorem 2 hold. Then, the convergence rate of the value function of
the whole iterative process is as follows:

‖V k − V ∗‖ <
k−1∏
i = 0

[
2− αi

(
1 +

√
1− 2Kη

)] 1−√1− 2Kη

2kK
.

Proof: From the quadratic function, it can be derived that

ψ′ (t) = 2Kt− 2, ψ′′ (t) = 2K,ψ
(
t0
)
= 2η, ψ′

(
t0
)
= −2

ψ (t∗) = 0, t∗ = φ (t∗) .

The scalar Newton’s method φ in Theorem 2 is expressed as

tk+1 = φ
(
tk
)
=

(
1− αk

2

)
tk +

αk

2K
− αk−

1
K

+ 2η

2Ktk − 2
.

Thus, the error of tk+1 is constrained by that of tk

t∗ − tk+1 =

[(
1− αk

2

)
− αk (1− 2Kη)

2 (1−Kt∗) (1−Ktk)
] (

t∗ − tk)

<
2− αk (1 +√1− 2Kη

)
2

(
t∗ − tk) .

Therefore, the convergence rate of the scalar sequence is

t∗ − tk <
k−1∏
i = 0

2− αi (1 +√1− 2Kη
)

2

(
t∗ − t0)

=
k−1∏
i=0

[
2− αi

(
1 +

√
1− 2Kη

)] 1−√1− 2Kη

2kK
.

Substituting the abovementioned inequality into (20), we can obtain
the convergence speed of the value function. Suppose variable step size
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αk is constant, i.e.,αk ≡ α. Given an ε-optimal solution ‖V k − V ∗‖ <
ε, the required Newton iteration

k > O (log1−αε) =
O (log (ε−1))

log
(
(1− α)−1

) = O (log (ε−1))

where the constant term 1/ log((1− α)−1) is positively related to the
policy evaluation error. �

Remark 5: Hyperparameter αk can be employed to adjust the con-
vergence rate. Numerical results show that the termination condition
(18) can be easily satisfied if αk is set to a small positive number.
However, this will slow down convergence compared to accurate policy
evaluation, i.e.,αk ≡ 1. In the latter case, the iteration process is equiv-
alent to the traditional policy iteration algorithm, whose convergence
rate is a particular case of our results when applying a stricter inequality
zoom to iteration increments [12], [23].

Remark 6: The practical implementation of Algorithm 1 is only
limited to affine systems because the optimal policy has no analytical
solution in general nonlinear systems. In order to exhibit the potential
of relaxation thoughts in general nonlinear systems, we try to propose a
ternary policy iteration (TPI) algorithm without theoretical convergence
guarantees. The policy improvement step is also relaxed by performing
single or multiple gradient descent steps:

θ ← θ − λθ∇θLθ
(
ωk+1, θk, ηk

)
η ← η − λη∇ηLη

(
ωk+1, θk, ηk

)
where control policy u(x; θ) and disturbance policy w(x; η) are ap-
proximated via neural networks, θ and η are parameters to be learned.
Their loss functions are as follows:

Lθ
(
ωk+1, θk, ηk

) Δ
= Ex∈D

[
H
(
x, θk, ηk, ωk+1

)]
Lη
(
ωk+1, θk, ηk

) Δ
= Ex∈D

[−H (x, θk, ηk, ωk+1
)]

where the Hamiltonian is approximated via ternary parameters

H (x, θ, η, ω)
Δ
= l (x, u (x; θ) , w (x; η))

+
∂V (x;ω)

∂xT
(f (x)+g (x)u (x; θ)+k (x)w (x; η)) .

V. SIMULATION RESULTS

This section first studies an affine nonlinear model with an analytical
solution of the corresponding HJI equation. Polynomial bases and
MLP are selected to validate the convergence accuracy achieved by
Algorithm 1. Then, a model-free relaxed policy iteration algorithm
with system identification embedded in policy training is applied to
an unknown affine nonlinear system to compare the control effects of
different algorithms. Finally, the TPI algorithm is implemented in a
general nonlinear system to show its effectiveness and potential.

A. Oscillator Model

Consider an oscillator model mentioned in [12], where

f(x) =

[
− 1

4
x1

1
2
x21x2 − 1

2γ2
x32 − 1

2
x2

]
,

g(x) =

[
0
x1

]
, k(x) =

[
0
x2

]
.

In the utility function, Q = I , R = I, and γ = 2. Note that the
corresponding HJI equation (10) can be solved analytically, and the
Nash value of this problem is V ∗(x) = 2x21 + x22.

TABLE I
HAMILTONIAN OF POLICY EVALUATION STEP

Fig. 2. Weights of relaxed policy iteration algorithm. (a) Weights of
value network. (b) Relative error of weights.

Fig. 3. Absolute error of value.

Choose a fourth-degree polynomial to approximate the value
function, i.e., V (x;ω) = ωT σ (x) = ω1 x

2
1 + ω2x1x2 + ω3x

2
2 +

ω4x
4
1 + ω5x

3
1x2 + ω6x

2
1x

2
2 + ω7x1x

3
2 + ω8x

4
2. An example of the

least squares method is shown in Table I. In the policy evaluation step,
the weights of the value network are updated by sampling 26 points and
minimizing the mean square error. It can be seen that the Hamiltonian
(17) after the policy evaluation step is only gradually tending toward
zero, which provides evidence that the policy evaluation is biased.

When applying the RPI algorithm, the batch size is set to 26, and the
learning rate is 10−3. The degree of relaxation αk in the termination
condition (18) is selected as 0.12, which is a tradeoff between the
total gradient steps and accuracy in practice. Run the algorithm ten
times independently, and the weights of value network are shown in
Fig. 2, where dotted lines represent the optimal weights ω∗, colored
solid lines and shaded areas represent the mean and range of the
learned weights ω, respectively. It can be known from Fig. 2(b) that
the relative error of ω can reach 0.1% in the sense of Euclidean norm.
Note that (1− 0.12)50 ≈ 0.2%. The upper bound of the weight error
is reasonable. Therefore, the theoretical study in the previous section
for affine nonlinear systems is validated.

To eliminate the influence of approximator type on the algorithm,
an MLP with two hidden layers, each of which contains 26 neu-
rons, is employed to approximate the value function. Run the al-
gorithm ten times independently, with the rest of the settings left
unchanged. The mean value of the absolute error of the value network
in the range [−1, 1]× [−1, 1] is shown in Fig. 3, where the error
is also around 0.1%. This shows that the selection of the approxi-
mation function does not affect the application and accuracy of the
algorithm.
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Fig. 4. Control effects of the suspension system.

B. Suspension System

Consider an unknown suspension system described in [16], whose
parameters and nonlinear dynamics are given by:

ẋ1 = x2, ẋ3 = x4

ẋ2 = − 1

Mb

[
Ka (x1 − x3) +Kn(x1 − x3)3 + Ca (x2 − x4)− u

]

ẋ4 =
1

Mus

[−Mbẋ2 −Kt (x3 − w)] .

Set Q = diag([ 1000 3 100 0.1 ]), R = I, and γ = 30.
System identification [24], [25] is integrated into the policy training

process to form a data-driven algorithm without prior knowledge about
the dynamic model, attain excellent sample efficiency, and avoid plain
combinations. At each Newton iteration, samples are collected from
the actual system, and the approximate dynamic model is updated by
performing several gradient descent steps on the supervised learning
objective. Historical data are utilized to achieve persistent learning.
Meanwhile, the continuously updated approximate dynamic model is
adopted to run the RPI algorithm with polynomial and MLP. The used
MLP shares the same structure as the previous example. The step size
αk is also selected as 0.12. The batch size is set to 26, and the learning
rate is 10−3.

In order to evaluate the model-free version of RPI after 50 Newton
iterations, a single bump is applied as road disturbance

w (t) =

{
0.038 (1− cos (8πt)) , t ∈ [ 0.5, 0.75)

0, t /∈ [ 0.5, 0.75)

and the trajectories of the car body are plotted in Fig. 4. For com-
parison, the results of the latest and best-known RL/ADP methods,
including ADP [24], SAC [26], PPO [27], and SOS-ADP [16], are also
shown. SOS-ADP solves a transformed relaxed optimization problem,
and the approximation may lead to unsatisfactory results. The most
commonly used RL algorithms, including stable and effective on-policy
method PPO and efficient off-policy method SAC without asymptotic
convergence guarantees, achieve better control effect. RPI and ADP
algorithms with polynomials attain the same control effect since they
solve the original problem with the same approximation structure. The
RPI algorithm with MLP shows improvement in control effect over
other results due to theoretical guarantees and extended approximation
capability.

Fig. 5. Tracking effect.

C. Vehicle Tracking

Consider a dynamic vehicle model with horizontal slope disturbance,
which is a general nonlinear system

⎡
⎢⎢⎢⎢⎣
v̇x
v̇y
ω̇r
ϕ̇
ẏ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

ax − Fyf sinδ
m

+ vyωr
Fyf cosδ+Fyr

m
− vxωr

aFyf cosδ−bFyr

Izz

ωr

vxsinϕ+ vycosϕ

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣
gsinϕ
gcosϕ

0
0
0

⎤
⎥⎥⎥⎥⎦ sinβ

where vx and vy are longitudinal and lateral velocities, ωr is the yaw
rate, ϕ and y are the yaw angle and lateral distance between the vehicle
and the reference trajectory, respectively. The reference trajectory is a
periodic double-lane change, as shown in Fig. 5. The control input is
u = [δ ax]

T , where δ is the steering angle and ax is the longitudinal
acceleration. The disturbance w is a sine function of the horizontal
slope β. The lateral tire force is approximated via the Fiala tire model
[28]. All parameters are taken from [28]. The utility function is

l (x, u,w) = 16(vx − 12)2 + 0.02ω2
r + 18ϕ2

+ 40y2 + 0.1δ2 + 0.3a2x − 52wTw

where the desired longitudinal velocity is 12 m/s.
To implement the TPI algorithm, three MLPs with five hidden

layers, each of which has 25 neurons, are employed. The activation
functions of hidden layers are ELU, and those of the output layers of the
value network, policy network, and disturbance network are selected as
softplus, tanh, and tanh, respectively. The output of the policy network
multiplies [π/9 3]T to adjust the amplitude of control. The batch size
is set to 28. Learning rates of networks are 4 × 10−5, 10−5, and 10−5,
and Adam method is used to update networks [19].

After 400 thousand gradient steps, the trajectory tracking effect of
the vehicle is shown in Fig. 5, where the horizontal slope is set to
w = sin1◦. To further verify the robustness of the TPI algorithm,
a comparison simulation is performed with the GPI algorithm [28],
whose dynamic parameters, utility function, network framework, and
learning process are the same as those of our algorithm, apart from the
omission of disturbance training. The root mean square error from the
reference trajectory is applied to represent the control precision. It can
be found from Fig. 6 that the precision of the TPI algorithm changes
slightly within the range of slope angles from - 10◦ to 10◦ compared
with the GPI algorithm. Therefore, the TPI algorithm with adversarial
training has a better robust performance in this general nonlinear
case.
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Fig. 6. Robustness of TPI algorithm. (a) Precision of yaw angle.
(b) Precision of lateral distance.

VI. CONCLUSION

A relaxed policy iteration algorithm is presented in this article to
solve nonlinear zero-sum games. The issue that policies are difficult to
evaluate accurately in the actual deployment of algorithms is empha-
sized. Therefore, precise policy evaluation is relaxed by an inequality
termination condition. Convergence properties are proven by leveraging
an equivalent Newton’s method, and exponential convergence speed is
derived. Simulation results demonstrate that the algorithm converges
to the Nash solution for affine plants with around thousandths accuracy
after 50 iterations, keeping pace with theoretical derivation. Moreover,
the obtained solution has better resistance to disturbances for general
nonlinear plants. The convergence and computational efficiency studies
for general nonlinear systems are fascinating and challenging topics that
we will leave to future work.
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