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Abstract— Model error and external disturbance have been
separately addressed by optimizing the definite H∞ performance
in standard linear H∞ control problems. However, the concur-
rent handling of both introduces uncertainty and nonconvexity
into the H∞ performance, posing a huge challenge for solv-
ing nonlinear problems. This article introduces an additional
cost function in the augmented Hamilton–Jacobi–Isaacs (HJI)
equation of zero-sum games to simultaneously manage the model
error and external disturbance in nonlinear robust performance
problems. For satisfying the Hamilton–Jacobi inequality in non-
linear robust control theory under all considered model errors,
the relationship between the additional cost function and model
uncertainty is revealed. A critic online learning algorithm, apply-
ing Lyapunov stabilizing terms and historical states to reinforce
training stability and achieve persistent learning, is proposed to
approximate the solution of the augmented HJI equation. By con-
structing a joint Lyapunov candidate about the critic weight and
system state, both stability and convergence are proved by the
second method of Lyapunov. Theoretical results also show that
introducing historical data reduces the ultimate bounds of system
state and critic error. Three numerical examples are conducted
to demonstrate the effectiveness of the proposed method.

Index Terms— Approximate dynamic programming (ADP),
Hamilton–Jacobi–Isaacs (HJI) equation, robust performance,
uncertain nonlinear systems.

I. INTRODUCTION

MODEL error and external disturbance are very common
in robust control problems [1], [2]. For linear dynamics,

robust stabilization and disturbance attenuation problems can
be described as standard H∞ control problems and solved by
convex optimization methods based on Riccati equation [3].
Nevertheless, robust performance problems considering both
the model error and external disturbance are generally non-
convex. Classical approaches, including D–K iteration [4] and
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bilinear matrix inequalities [5], heuristically optimize the H∞

performance with uncertainty by solving a series of convex
optimization problems iteratively, but they are incompetent to
cope with nonlinear problems.

Recently, the relationship between the L2 induced norm
of nonlinear systems and Hamilton–Jacobi inequality has
been investigated to solve nonlinear robust performance
problems [6], [7]. However, the derived Hamilton–Jacobi–
Isaacs (HJI) equations are nonlinear partial differential
equations, whose analytical solutions are intractable to
obtain [8], [9]. To tackle the curse of dimensionality
problem, approximate dynamic programming (ADP)
methods are introduced to solve Hamilton–Jacobi equations
numerically [10], and neural networks are employed to
approximate the solution [11], [12]. Nowadays, ADP has
been widely employed in optimal control problems, such as
chemical process control [13] and vehicle control [14]. The
research on handling external disturbance or model error has
attracted more and more attention [15], [16], [17].

From the view of a zero-sum game, Abu-Khalaf et al. [18]
proposed a two-loop policy iteration to solve disturbance
attenuation problems, where control and disturbance policies
were updated asynchronously. A simultaneous policy update
paradigm with only one iterative loop was proposed to simplify
the training process [19], [20], while the stability analysis of
the dynamic system was not fully discussed. Then, an online
approximator (OLA)-based framework was developed to apply
the gradient descent method to learn the critic solution of
the HJI equation with synchronously updating policies [21].
Radially unbounded Lyapunov functions were introduced in
learning objective [22], [23] to ensure the stability of the
evolving system and relax the necessity of initial stabilizing
controller, which was tricky to find [24]. However, the persis-
tency of excitation (PE) condition was required in the above
algorithms to guarantee the persistent learning of the critic net-
work, which also led to sample inefficiency [25]. To eliminate
the PE condition, historical states were also utilized in tuning
laws, where the requirement of the initial stabilizing controller
was just the limitation [26], [27]. In summary, it is rather chal-
lenging to design a method that can remove the requirements
of the PE condition and initial stabilizing controller and ensure
the boundedness of the system state and weighting error.

For investigating nonlinear systems with model errors, the
optimal robust guaranteed cost control problem was solved
via constructing an uncertainty-related cost within the scope of
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ADP techniques [28], [29]. Similar approaches were employed
in tracking problems to acquire a desired tracking performance
by ensuring an adequate level of cost [24]. To reinforce the
training stability of the online system, a stabilizing term was
considered in the learning criterion [30], [31]. Nevertheless,
a probing noise composed of different sine waves was added
to control inputs to satisfy the PE condition. Event-triggered
H∞ control has also attracted attention, where the event-based
mechanism was combined with critic learning to analyze the
minimal sample interval time [32], [33]. Similarly, a probing
noise was needed to satisfy the PE condition [32], [33],
or initial stabilizing controllers were required and obtained
via trial and error [34]. Beyond that, few studies considered
both the model error and external disturbance.

In this work, we employ an uncertainty-conditioned cost
(UCC) function to resolve nonlinear robust performance prob-
lems and bridge the above research gap. The robust controller
generated from the augmented HJI equation is first demon-
strated to fulfill disturbance attenuation performance for any
considered model errors. Then, a critic learning method is
developed to approximate the augmented HJI solution, where
the requirements of the PE condition and initial stabilizing
controller are relaxed. The system state and critic weighting
error are finally proved to be uniformly ultimately bounded
(UUB). The main contributions of this article are as follows.

1) Based on the zero-sum game scheme, whose original
intention is to deal with disturbance, we further intro-
duce a UCC function to the augmented HJI equation to
cope with model errors. The conditions required for the
UCC function to satisfy the Hamilton–Jacobi inequality
in nonlinear robust control theory for all considered
model errors are built. Theoretical analysis and exper-
imental results prove that the closed-loop system with
model errors, driven by the derived controller, achieves
disturbance attenuation performance for any bounded
perturbations.

2) We propose a critic learning method, which simulta-
neously removes the requirements of the PE condition
and initial stabilizing controller by experience replay
and Lyapunov stabilizing term, to solve the augmented
HJI solution. The bounded stability of the closed-loop
system and the boundedness of the critic weight error
are proved by the Lyapunov extension theorem. Besides,
introducing historical data is theoretically and experi-
mentally validated to reduce the ultimate error bound of
critic weight.

The rest of this article is organized as follows. In Section II,
the nonlinear robust performance problem is illustrated.
Section III derives an augmented HJI solution by designing a
UCC function. A numerical algorithm along with its stability
and convergence analysis is presented to approximately solve
the augmented HJI equation in Section IV. Three numerical
examples are shown in Section V to demonstrate the effec-
tiveness of the developed method. Section VI concludes this
work.

Notation: R denotes the set of real numbers. Rn and Rn×m

denote the Euclidean space of n-dimensional real vectors and

the space of n × m real matrices, respectively. ∥X∥ denotes
the norm of the vector or matrix X . The transpose operation of
X is denoted by X⊤. The L2-norm of the signal w(t) defined
in [0, ∞) is expressed as ∥w∥2 ≜ (

∫
∞

0 w⊤(t)w(t)dt)1/2, and
w ∈ L2[0, ∞) if ∥w∥2 < ∞. In stands for an n × n identity
matrix. For the symmetric matrix X ,

√
X represents the square

root operation on the matrix, and λmin(X) denotes the minimal
eigenvalue. Besides, the gradient of J (x) with respect to the
vector x is represented via ∂ J (x)/∂x or ∇ J (x).

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Robust Performance Problem for Nonlinear Systems

Consider the following nonlinear plant:

ẋ = f (x) + 1 f (x) + g(x)u + k(x)w (1)

with state x ∈ X ⊆ Rn and control input u ∈ Rm , where
X is a compact set containing the origin. The functions f :

Rn
→ Rn , g : Rn

→ Rn×m , and k : Rn
→ Rn×q are known

vector-valued or matrix-valued functions. Assume f (x0) =

0 for some x0 ∈ X , and especially f (0) = 0. As in other
literature, we assume that f , g, and k are Lipschitz continuous
on X and that the uncertain system (1) is controllable for any
model errors 1 f (x) given below.

The uncertainty of the system comes from two aspects,
namely external disturbance and model error. The disturbance
signal w ∈ Rq , and the perturbation function

1 f (x) = E f (x)δ f (x) (2)

represents the internal uncertainty caused by modeling error
or parameter perturbation. E f (x) ∈ Rn×p is a known
matrix-valued function and δ f (x) ∈ Rp is an uncertain vector-
valued function. The set of perturbation functions is given by

� f ≜
{
1 f

∣∣ 1 f = E f (x)δ f (x), δ f (x0) = 0∥∥δ f (x)
∥∥ ≤ m f (x) ∀x ∈ X

}
(3)

where the known scalar-valued function m f (x) gives the
boundary of δ f (x). When 1 f (x) = 0, the system is referred
to as the nominal system.

To formulate the performance of the closed-loop system,
we set z ∈ Rn+m as the performance output

z ≜

[√
Qx

√
Ru

]
(4)

and the square of its norm ∥z∥2
= z⊤z = x⊤Qx + u⊤ Ru,

where Q ≥ 0 and R > 0 are symmetric matrices with Q ∈

Rn×n and R ∈ Rm×m . Suppose that the system (1)–(4) is
zero-state observable for all 1 f ∈ � f . When the external
disturbance w acts on the system, it will affect the performance
output z. The following definition characterizes the attenuation
performance of the system against external disturbances.

Definition 1 (Disturbance Attenuation): For any distur-
bances w ∈ L2[0, ∞), if the L2-gain of a system is less than
or equal to γ > 0, that is,∫

∞

0
∥z∥2 dt ≤ γ2

∫
∞

0
∥w∥

2 dt (5)
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Fig. 1. Feedback system with an uncertain nonlinear system and a state
feedback controller.

then the system is said to satisfy the disturbance attenuation
performance with attenuation level γ.

The disturbance attenuation performance is actually the
performance of concern in robust performance problems.
Model error not only affects the asymptotic stability of the
free system, but also affects the robustness of disturbance
attenuation performance, that is, robust performance.

Definition 2 (Robust Performance): For any perturbations
1 f ∈ � f , if the system (1) meets the disturbance attenuation
performance with attenuation level γ and the free system with
w = 0 is asymptotically stable, then the system (1) is said to
accomplish the robust performance with attenuation level γ.

Now, the nonlinear robust performance problem, to be
considered in this article and represented by the block diagram
in Fig. 1, is formulated as follows. From the perspective of
optimization objectives, robust performance problems require
achieving the goals of robust stabilization problems and dis-
turbance attenuation problems simultaneously, which poses a
huge challenge for controller designing.

Problem 1 (Nonlinear Robust Performance Problem):
For a given uncertain nonlinear system (1) with external
disturbance w and perturbation set � f described in (3),
design a state feedback controller u(x), such that for any
perturbations 1 f ∈ � f , the closed-loop system achieves
preset attenuation level γ and the free system with w = 0 is
asymptotically stable.

B. Preliminary

In this section, we will review an existing result in nonlinear
robust control theory, as a preliminary for the proofs of our
main results. Let us consider a simple nonlinear system with
the only disturbance signal as the input vector{

ẋ = f (x) + k(x)w

z = h(x)
(6)

where h is a nonlinear output function. The following lemma
gives sufficient conditions for the system to comply with the
disturbance attenuation performance with attenuation level γ.

Lemma 1: Consider the system (6) and let γ > 0. Assume
that the system (6) is zero-state observable. If there exists
a differentiable function V (x) ≥ 0 with V (x0) = 0, which
fulfills the Hamilton–Jacobi inequality

(∇V (x))⊤ f (x) +
1

4γ2 (∇V (x))⊤k(x)k⊤(x)∇V (x)

+ z⊤z ≤ 0 (7)

for all x ∈ X , then the function V (x) meets the following
dissipation inequality:

(∇V (x))⊤ ( f (x) + k(x)w)

≤ −(∥z∥2
− γ2

∥w∥
2) ∀w ∈ Rm (8)

and the L2 gain of the system (6) is less than or equal to γ.
Remark 1: Some coefficients in the Hamilton–Jacobi

inequality (7) are adjusted compared with Theorem 2 in [6].
As a result, the factors on both sides of the dissipation inequal-
ity (8) are the same, and the function V (x) directly matches
the integral of the cost function. A similar “completing the
squares” skill can be exploited for Lemma 1, whose proof is
omitted since it is a straightforward modification of that in [6].

Lemma 1 means that the nonlinear system (6) is bounded-
input bounded-output (BIBO) stable. In addition to the
disturbance attenuation performance, the asymptotic stability
of the free system with w = 0 can be obtained from
the assumption of zero-state observability through LaSalle’s
invariance principle [6], [7]. To comply with robust perfor-
mance, a controller will be designed such that the closed-loop
system satisfies the Hamilton–Jacobi inequality (7) regardless
of parameter perturbation.

III. NONLINEAR ROBUST PERFORMANCE PROBLEM VIA
AUGMENTED HJI SOLUTION

In this section, we will first construct a zero-sum game
based on the nominal system with an additional cost function
in Section III-A. Then, we will reveal how the cost function
is devised to accomplish robust performance. With the UCC
function, an augmented HJI equation will be derived, which
is a nonlinear partial differential equation with respect to the
value function. Finally, a robust controller can be extracted by
estimating the solution to the augmented HJI equation.

A. Zero-Sum Game of the Nominal System

Given the nominal system corresponding to the nonlinear
uncertain system (1)

ẋ = f (x) + g(x)u + k(x)w (9)

the value function of the initial state x = x(0) is defined as

V (x) ≜
∫

∞

0
(l (x(τ ), u(τ ), w(τ)) + 0(x(τ )))dτ (10)

where

l (x, u, w) ≜ ∥z∥2
− γ2

∥w∥
2

= x⊤Qx + u⊤ Ru − γ2w⊤w. (11)

Note that 0(x) is an additional cost function that needs to be
designed for robust performance. The method of settling the
additional cost function will be given in Section III-B. Then
a zero-sum game is formulated as

V ∗(x) = min
u(·)

max
w(·)

∫
∞

0
(l (x(τ ), u(τ ), w(τ)) + 0(x(τ )))dτ

(12)

where V ∗(x) is the optimal value function and also the Nash
value of the zero-sum game.
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The key to resolving the zero-sum game is to solve the
correlative Hamilton–Jacobi–Isaacs (HJI) equation [9]. First,
define the Hamiltonian of the control problem as

H (x, u, w,∇V (x)) ≜ l(x, u, w) + 0(x)

+ (∇V (x))⊤
(

f (x) + g(x)u + k(x)w
)
.

(13)

By applying the dynamic programming principle, the HJI
equation is obtained as [9]

min
u

max
w

H
(
x, u, w,∇V ∗(x)

)
= 0. (14)

Given the optimal value function V ∗(x), on the basis of two
stationarity conditions, we have the optimal control policy
u∗(x) and the worst-case disturbance policy w∗(x)

u∗(x) = arg min
u

H
(
x, u, w,∇V ∗(x)

)
= −

1
2

R−1g⊤(x)∇V ∗(x) (15)

w∗(x) = arg max
w

H
(
x, u, w,∇V ∗(x)

)
=

1
2γ2 k⊤(x)∇V ∗(x). (16)

Substituting the optimal control policy u∗(x) and the
worst-case disturbance policy w∗(x) into the HJI
equation (14), a nonlinear partial differential equation
with respect to the optimal value function V ∗(x) with
V ∗(x0) = 0 is derived

x⊤Qx + 0(x) + (∇V ∗(x))⊤ f (x)

+
1
4
(∇V ∗(x))⊤M(x)∇V ∗(x) = 0 (17)

where

M(x) ≜
1
γ2 k(x)k⊤(x) − g(x)R−1g⊤(x). (18)

So far, we have derived the basic form of the HJI solution
for the nominal system (9). After the additional cost function
0(x) is determined to take into account the robustness against
the uncertainty 1 f in Section III-B [see (24)], we will get the
full expression of the augmented HJI equation at the end of
this section [see (25)].

B. Augmented HJI Equation With UCC Function

Given an attenuation level γ, the primary HJI equation (14)
with 0(x) = 0 constructs a necessary and sufficient condi-
tion for the solution of disturbance attenuation problem [9].
By means of Lemma 1, we will find that incorporating an
additional cost function related to model uncertainty 1 f
contributes to achieving robust performance for the augmented
HJI solution (19). The following Theorem 1 deduces the
condition that the additional cost function needs to meet and
gives a family of expressions for 0(x). For the convenience
of writing, some functions E f (x), δ f (x), and m f (x) will be
abbreviated as E f , δ f , and m f , respectively.

Theorem 1: Suppose the nonlinear system (1)–(4) is
zero-state observable for all 1 f ∈ � f . If there exists a positive
semidefinite function 0(x) ≥ 0, such that the augmented

HJI equation admits a continuously differentiable positive
semidefinite solution V ∗(x) ≥ 0 (V ∗(x0) = V ∗(0) = 0)

x⊤Qx + 0(x) + (∇V (x))⊤ f (x)

+
1
4
(∇V (x))⊤M(x)∇V (x) = 0 (19)

and the additional cost function 0(x) satisfies

(∇V (x))⊤1 f (x) ≤ 0(x) ∀1 f ∈ � f ∀x ∈ X (20)

then the nonlinear state feedback controller

u(x) = −
1
2

R−1(x)g⊤(x)∇V (x) (21)

makes the closed-loop system achieve robust performance.
Proof: With the given state feedback controller (21), the

closed-loop dynamic system can be represented as

ẋ = fcl(x) + k(x)w (22)

where

fcl(x) ≜ f (x) + 1 f (x) −
1
2

g(x)R−1(x)g⊤(x)∇V (x)

and the square of the norm of the performance output becomes

z⊤z = x⊤Qx +
1
4
(∇V (x))⊤g(x)R−1g⊤(x)∇V (x).

To use the conclusion in Lemma 1, substituting the above
dynamic system (22) into (7) gives

(∇V (x))⊤ fcl(x) +
1

4γ2 (∇V (x))⊤k(x)k⊤(x)∇V (x) + z⊤z

= x⊤Qx+(∇V (x))⊤( f (x)+E f δ f )+
1
4
(∇V (x))⊤M∇V (x)

= (∇V (x))⊤E f δ f − 0(x) ≤ 0

where (19) and (20) are used for the last equality and inequal-
ity, respectively. Due to Lemma 1, the L2-gain of the system
is less than or equal to γ for all 1 f ∈ � f .

To show the asymptotic stability of the free system with the
derived controller (21)

ẋ = fcl(x) (23)

choose the solution V (x) ≥ 0 of (19) as a Lyapunov candidate.
According to the above derivation process, we have

V̇ (x) = (∇V (x))⊤ fcl(x)

≤ −z⊤z −
1

4γ2 (∇V (x))⊤k(x)k⊤(x)∇V (x)

≤ 0.

As a result, the case when V̇ (x) = 0 leads to
√

Qx = 0,√
Ru = 0, and ẋ = f (x) + 1 f (x). Recalling the zero-state

observability assumption, x(t) ≡ 0. Based on LaSalle’s
invariance principle [6], [7], the equilibrium x0 = 0 of the
free system (23) is asymptotically stable for all 1 f ∈ � f .

Since the additional cost function 0(x) is related to model
uncertainty or model error, it is named the UCC function.
Inspired by [28], the following corollary shows a general way
to derive a family of UCC functions 0(x) with a parametric
function λ(x).
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Corollary 1: The family of UCC functions

0(x) ≜
m2

f (x)

λ2(x)
+

λ2(x)

4
(∇V (x))⊤E f (x)E⊤

f (x)∇V (x)

with any scalar parametric functions λ(x) > 0 satisfies the
following condition:

(∇V (x))⊤1 f (x) ≤ 0(x) ∀1 f ∈ � f ∀x ∈ X .

Proof: Substituting the expression of 0(x) into the above
inequality gives

(∇V (x))⊤E f δ f − 0(x)

= −
λ2(x)

4
(∇V (x))⊤E f E⊤

f ∇V (x)

+ (∇V (x))⊤E f δ f −
m2

f

λ2(x)

= −

∥∥∥∥λ(x)

2
E⊤

f ∇V (x) −
1

λ(x)
δ f

∥∥∥∥2

−
m2

f − δ⊤

f δ f

λ2(x)

≤ 0.

Although λ(x) is an adjustable function to form a sufficient
condition to make (20) hold, it is usually fixed as λ(x) ≡ 1 in
optimal robust guaranteed cost control problems [28]. In the
following content, the UCC function 0(x) is instantiated as

0(x) = m2
f (x) +

1
4
(∇V (x))⊤E f (x)E⊤

f (x)∇V (x). (24)

Based on nonlinear robust control theory, the instantiated UCC
function makes the controller solved by the augmented HJI
equation achieve robust performance for all considered model
errors, but the primary HJI solution only achieves the preset
disturbance attenuation performance for the nominal system.
In theory, this reflects the advantage of the UCC function.

Finally, with the UCC function 0(x) in (24), the augmented
HJI equation (19) becomes

x⊤Qx + m2
f (x) + (∇V (x))⊤ f (x)

+
1
4
(∇V (x))⊤

(
M(x) + E f (x)E⊤

f (x)
)

∇V (x) = 0. (25)

The augmented HJI equation (25) about the value function
V (x) is a novel nonlinear partial differential equation, which
is different from that of the disturbance attenuation problem
and the optimal robust guaranteed cost control problem. Since
the analytical solution is rather difficult to identify, we will
put forward a numerical ADP algorithm in Section IV to
approximate its solution and extract the robust controller.

IV. ADP-BASED ALGORITHM FOR APPROXIMATING THE
AUGMENTED HJI SOLUTION

For the uncertain nonlinear system (1), a state feedback con-
troller achieving robust performance for any perturbations can
be obtained by solving a zero-sum game of the nominal system
with a UCC function. However, it is rather difficult to reach
the analytical solution to the augmented HJI equation (25).
Thus, a numerical algorithm to solve (25) is necessary.

In light of the traditional approximate dynamic program-
ming technique, this article exhibits an online algorithm by

Fig. 2. Schematic of the developed algorithm.

employing only one value network, namely the critic network.
The schematic of the propounded ADP-based algorithm for
attaining the robust controller is shown in Fig. 2, where the
solid line denotes the signal, and the yellow dashed line
indicates the backpropagation path for tuning the learned
weight ω̂c of the critic network. Note that the first layer of the
critic network represents the process of computing the feature
vector σc(x) from the state input x through a fixed operation,
which is different from the traditional multilayer perceptron.
The algorithm framework and each block including critic
network (32), control function, and disturbance function (34),
the corresponding nominal system (35) with control input and
disturbance input, approximate Hamiltonian (36) and stabiliz-
ing term (39) will be explained in detail with the matching
equations in Sections IV-A and IV-B.

A. Neural Network Approximation

Noting the hypothesis in Theorem 1 that the solution
V ∗(x) to the augmented HJI equation (19) is continuously
differentiable, V ∗(x) can be approximated by neural networks
based on the universal approximation property. To simplify the
analysis, a single-layer neural network is employed

V ∗(x) ≜ ω⊤
c σc(x) + ϵc(x) (26)

where ωc ∈ Rh is the ideal weight, σc(x) ∈ Rh is the
feature function, usually consisting of polynomial basis, and
ϵc(x) ∈ R is the unknown approximation error. The expression
of the solution varies for different dynamic systems. To our
knowledge, it is tough to provide general guidelines for design-
ing the feature function. For a specific system, experimental
experience is beneficial for selecting feature functions. Then,
the gradient of the value function is denoted as

∇V ∗(x) = (∇σc(x))⊤ ωc + ∇ϵc(x). (27)

Assume that the weight ωc, the gradient of the feature ∇σc(x),
the approximation error ϵc(x), and its gradient ∇ϵc(x) are all
bounded on the compact set X . Recalling (15) and (16), the
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optimal controller and worst-case disturbance are written as

u∗(x) = −
1
2

R−1g⊤(x)
(
(∇σc(x))⊤ ωc + ∇ϵc(x)

)
w∗(x) =

1
2γ2 k⊤(x)

(
(∇σc(x))⊤ ωc + ∇ϵc(x)

)
. (28)

Under the optimal controller u∗(x) and worst-case disturbance
w∗(x), the nominal system (9) can be rewritten as

ẋ = f (x) + g(x)u∗(x) + k(x)w∗(x)

= f (x) +
1
2

M(x)
(
(∇σc(x))⊤ ωc + ∇ϵc(x)

)
. (29)

For the convenience of writing in the subsequent derivation
process, a matrix is introduced as follows:

ξ(x) ≜ ∇σc(x)
(

M(x) + E f (x)E⊤

f (x)
)

(∇σc(x))⊤ . (30)

Substituting the solution V ∗(x) approximated by the neural
network (26) into the augmented HJI equation (25) yields

H (x, ωc) ≜ x⊤Qx + m2
f (x) + ω⊤

c ∇σc(x) f (x)

+
1
4
ω⊤

c ξ(x)ωc + eH (x) = 0 (31)

where

eH (x) ≜ (∇ϵc(x))⊤
(

f (x) +

(
M(x) + E f (x)E⊤

f (x)
)

×

(1
4
∇ϵc(x) +

1
2

(∇σc(x))⊤ ωc

))
denotes the approximation error of the Hamiltonian caused by
the neural network.

In our algorithm, the weight ω̂c of the estimated critic
network V̂ (x) will be trained and updated iteratively

V̂ (x) ≜ ω̂
⊤

c σc(x). (32)

Accordingly, the gradient of the estimated critic network is
denoted as

∇ V̂ (x) = (∇σc(x))⊤ ω̂c. (33)

Moreover, the estimated state feedback controller û(x) and
disturbance ŵ(x) are expressed as

û(x) = −
1
2

R−1g⊤(x) (∇σc(x))⊤ ω̂c

ŵ(x) =
1

2γ2 k⊤(x) (∇σc(x))⊤ ω̂c. (34)

Under the estimated optimal controller û(x) and estimated
worst-case disturbance ŵ(x), the closed-loop dynamics of the
nominal system (9) can be rewritten as

ẋ = f (x) + g(x)û(x) + k(x)ŵ(x)

= f (x) +
1
2

M(x) (∇σc(x))⊤ ω̂c. (35)

Similarly, the Hamiltonian can be approximated via the esti-
mated weight ω̂c

Ĥ
(
x, ω̂c

)
≜ x⊤Qx + m2

f (x) + ω̂
⊤

c ∇σc(x) f (x)

+
1
4
ω̂

⊤

c ξ(x)ω̂c. (36)

B. Algorithm Design

The objective of our algorithm is to learn the estimated
weight ω̂c of the critic network to minimize the approximation
error of the Hamiltonian (36) in the augmented HJI equation.
Furthermore, with the aim of ensuring stability during learning
and relaxing the necessity of the PE condition, a Lyapunov sta-
bilizing term [21], [31] mentioned in the following assumption
and experience replay technique [25], [27] are also included
in the algorithm design.

Assumption 1: Let Js(x) be a continuously differentiable,
radially unbounded Lyapunov function that satisfies

J̇ s(x) = (∇ Js(x))⊤
(

f (x) + g(x)u∗(x) + k(x)w∗(x)
)

< 0.

(37)

Furthermore, suppose that there exists a positive definite
matrix 8 ∈ Rn×n such that

J̇ s(x) = − (∇ Js(x))⊤ 8∇ Js(x) ≤ −λmin (8) ∥∇ Js(x)∥2 .

(38)

Remark 2: This assumption has been applied in previous
work to strengthen the stability during training and facilitate
the stability analysis of closed-loop systems [21], [28]. The
requirement of Js(x) being radially unbounded can be satisfied
by suitably choosing a quadratic polynomial function of the
state, such as Js(x) = 0.5 x⊤x .

The algorithm aims to minimize the error of the Hamilto-
nian (36). Hence, the primary objective is formulated as

E
(
x, ω̂c

)
≜

1
2

Ĥ2 (x, ω̂c
)
. (39)

To enhance the stability of the dynamic system during online
learning, a stabilizing term inspired by Lyapunov stability
theory is also considered [21]. Besides, for the sake of relaxing
the requirement of the PE condition and improving sample
efficiency, both historical states and current data [25] are
utilized to achieve continuous learning and ensure convergence
to a near-optimal solution. Take the derivative of the objective
function with respect to the learned weight ω̂c to derive its
dynamic expression

˙̂ωc = −αc
∂ E

(
x, ω̂c

)
∂ω̂c

− αc

Nb∑
i=1

∂ E
(
xi , ω̂c

)
∂ω̂c

− αs5(x, û, ŵ)
∂ J̇ s(x)

∂ω̂c
(40)

where αc is the learning rate, αs is a flexible rate to balance
the steepest descent term and the stabilizing term, {xi }

Nb
i=1 are

stored historical states, x is the current state, the nominal
system (35) is used to derive the stabilizing term, and the
unstability indicator function is defined as

5(x, û, ŵ) ≜

{
1, ∇ Js(x)⊤( f (x) + g(x)û + k(x)ŵ) ≥ 0
0, ∇ Js(x)⊤( f (x) + g(x)û + k(x)ŵ) < 0.

Remark 3: The stabilizing term can not only relax the
requirement of the initial stabilizing controller, but also
stabilize the system and facilitate the subsequent stability
proof [21], [28], [30]. When the system is unstable during
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learning, the stabilizing term is activated through the unstabil-
ity indicator function, and the learned weight evolves in the
direction of stabilizing the system. On the other hand, when
the system is stable, the unstability indicator function masks
the stabilizing term, making the learning objective degenerate
into the original target to minimize the approximation error of
the Hamiltonian.

Remark 4: The historical states applied in online learning
are sampled from a replay buffer, which is easy-to-implement.
Generally speaking, the number Nb of historical states needs
to be large enough to ensure that the partial terms of weight
gradient are linearly independent [25]. In this way, experience
replay can play a similar role of persistent excitation to
achieve continuous learning and guarantee that the Lyapunov
derivative in the subsequent theoretical analysis is negative.

Define the error of the learned weight of the critic network
as

ω̃c ≜ ωc − ω̂c (41)

and the approximate Hamiltonian Ĥ(x, ω̂c) can also be rep-
resented as a function of ω̃c

Ĥ (x, ω̃c) =
1
4
ω̃⊤

c ξ(x)ω̃c −
1
2
ω̃⊤

c ξ(x)ωc

− ω̃⊤

c ∇σc(x) f (x) − eH (x). (42)

Then, the dynamics of the weight estimation error ω̃c is

˙̃ωc = −αc
∂ E

(
x, ω̂c

)
∂ω̃c

− αc

Nb∑
i=1

∂ E
(
xi , ω̂c

)
∂ω̃c

− αs5(x, û, ŵ)
∂ J̇ s(x)

∂ω̃c

=

(
1
4
ω̃⊤

c ξ(x)ω̃c −
1
2
ω̃⊤

c ξ(x)ωc − ω̃⊤

c ∇σc(x) f (x) − eH

)
× αc

(
−

1
2
ξ(x)ω̃c +

1
2
ξ(x)ωc + ∇σc(x) f (x)

)
− αc

Nb∑
i=1

∂ E
(
xi , ω̂c

)
∂ω̃c

+
αs

2
5(x, û, ŵ)∇σc(x)M(x)∇ Js(x). (43)

The stability analysis of the closed-loop system and the con-
vergence study of the learned weight of the critic network will
be presented in Section IV-C via the well-known Lyapunov
theory.

Remark 5: The raised algorithm is an online approach that
needs to interact with the system. In the learning process,
the analytical expression of the system (1)–(4) is required,
and the state vectors applied to learning the critic network
are generated in an actual environment driven by learned or
estimated policies.

C. Stability and Convergence Analysis

In this section, by examining the dynamic properties of the
integrated system consisting of the nonlinear system (1) with
the inputs (34) and the tuning algorithm (40), the stability of

Fig. 3. Concept of UUB.

the closed-loop system and the convergence of the weight esti-
mation error ω̃c will be analyzed. The following definition [21]
is provided before presenting the analysis results.

Definition 3 (UUB): If there is a compact set X so that for
all x0 ∈ X , there exists a bound λx > 0 and a time τ(x0, λx )

such that ∥x(t)− xe∥ ≤ λx for all t ≥ t0 + τ(x0, λx ), then the
trajectory x(t) around the equilibrium point xe is said to be
UUB, whose concept is illustrated in Fig. 3.

Before the analysis, the following bounded assumptions
of system dynamics are provided to keep consistent with
previous studies [21], [28]. Besides, an assumption about the
Lyapunov function is also given to characterize the stability
of the optimal closed-loop dynamics.

Assumption 2: Some bounded assumptions about the
dynamic system and neural network are given as follows.

1) In the nominal dynamics (9), matrices g(x) and k(x) are
bounded as ∥g(x)∥ ≤ λg and ∥k(x)∥ ≤ λk , where λg
and λk are given positive constants.

2) The ideal weight ωc in (26) is bounded by a given
positive constant λω, that is, ∥ωc∥ ≤ λω.

3) On the compact set X , the terms ∇σc(x) and ∇ϵc(x)

in (27), and the approximation error of Hamiltonian
eH (x) in (31) are bounded as ∥∇σc(x)∥ ≤ λσ ,
∥∇ϵc(x)∥ ≤ λϵ , and |eH (x)| ≤ λe, where λσ , λϵ , and
λe are given positive constants.

4) Because of the boundedness of ∇σc(x) and the state
trajectory ẋ (29) under the optimal controller and worst-
case disturbance, it can be inferred that ∥∇σc(x)ẋ∗

∥ ≤

λσ x , where λσ x is a given positive constant.

The following theorems present the main results of the
stability and convergence analysis of the proposed tuning
algorithm (40). The stability of the system during the imple-
mentation of the algorithm can be guaranteed by proving that
the state is UUB, and the convergence can be obtained by
showing that the weight estimation error is UUB [21]. First,
we explore the simple case of not utilizing experience replay.

Theorem 2: Consider the nonlinear system (1) with both
model errors and external disturbance. If the weight of the
critic network is tuned by (40) without employing historical
states, then the weight estimation error ω̃c and the state x of
the system with the estimated policies (34) are UUB.

Proof: See Appendix A for the proof.
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According to the theoretical derivation of the above simple
case ignoring experience replay, the stability and convergence
analysis of the complete tuning law (40) is presented below.

Theorem 3: Follow the premise of Theorem 2. If the weight
of the critic network is tuned by (40), that is, considering
historical states, the weight estimation error ω̃c and the state
x of the system with the estimated policies (34) are still UUB.
Moreover, introducing historical data into the critic tuning
law (40) can reduce ultimate bounds λω̃c and λx .

Proof: To compare with the previous theoretical analysis,
adjust the Lyapunov function candidate (A.1) to

L (ω̃c, x) ≜
1

2αc(Nb + 1)
ω̃⊤

c ω̃c +
αs

αc
Js(x). (44)

Then, the same results of Theorem 2 can be directly obtained,
because the applied zoom techniques are valid for all states.

To further explore the influence of historical data in the
actual implementation, it can be observed that the first term of
the Lyapunov derivative (A.3) changes from the single term
of the current state to the average term of (Nb + 1) states.
Therefore, the inequality related to ξ(x) becomes(
ω̃⊤

c ξ(x)ω̃c

)
Nb + 1

ω̃⊤

c

(
ξ(x) +

Nb∑
i=1

ξ(xi )

)
ω̃c

 ≥
λξλ6ξ

Nb + 1
∥ω̃c∥

4

where the lower bound of the norm of
(ξ(x) +

∑Nb
i=1 ξ(xi ))/(Nb + 1) has

λ6ξ

Nb + 1
≥ λξ .

The corresponding conclusion also holds for λρ . Similarly, the
inequality related to κ(x) becomes(
ω̃⊤

c κ(x)ω̃c

)
Nb + 1

ω̃⊤

c

(
κ(x) +

Nb∑
i=1

κ(xi )

)
ω̃c

 ≤
λ̄κ λ̄6κ

Nb + 1
∥ω̃c∥

4

where the upper bound of the norm of
(κ(x) +

∑Nb
i=1 κ(xi ))/(Nb + 1) has

λ̄6κ

Nb + 1
≤ λ̄κ .

Relevant results also hold for λ̄ϑ and λ̄ρ . Note that in (A.4)
and (A.5), λ1 ∝ λξ , λ1 ∝ −λ̄κ , λ1 ∝ −λ̄ϑ , λ1 ∝ −λ̄ρ ,
λ2 ∝ −λρ , and λ2 ∝ λ̄ρ . Therefore, under other unchanged
conditions, employing historical states in the tuning law (40)
tends to make λ1 larger and λ2 smaller. According to the
definition of λ4 in (A.6), λ4 ∝ λ2, and λ4 ∝ 1/λ1. Thus,
λ4 tends to become smaller. Finally, combined with definition
formulas (A.7)–(A.10), it can be concluded that introducing
historical data can reduce ultimate bounds λω̃c and λx .

Remark 6: The reduction of the ultimate bound λω̃c of the
weighting error has the potential to accelerate the convergence
of critic weight [25]. Experimental results also demonstrate
that introducing historical data helps reduce the ultimate error
bound and speed up the convergence of the method.

Once the convergence of the critic network has been demon-
strated, the same technique can be applied to the control

function. The following corollary gives a simple proof of the
convergence of the control policy [31].

Corollary 2: The estimated controller û(x) in (34) con-
verges to a bounded neighborhood of the optimal one u∗(x)

in (28).
Proof: Based on (34) and (28), we have

û(x) − u∗(x) =
1
2

R−1g⊤(x)
(
(∇σc(x))⊤ ω̃c + ∇ϵc(x)

)
.

In consequence of the result in Theorem 2 or Theorem 3,
∥ω̃c∥ < λω̃c ultimately holds. Combining assumptions 1)
and 3) introduced in Assumption 2, we have∥∥û(x) − u∗(x)

∥∥ ≤
1
2

∥∥∥R−1
∥∥∥λg

(
λσ λω̃c + λϵ

)
≜ λû

which completes the proof.

V. NUMERICAL RESULTS

In this section, the proposed algorithm is compared with
existing methods for robust performance in three simulation
studies to verify its effectiveness. The first example considers
an uncertain linear system, while the other two examples deal
with uncertain nonlinear systems taken from the literature. The
influence of historical data on convergence characteristics is
verified in the first linear case with precise numerical solutions.
Complex feature vectors are applied to the second example to
explore their impact on performance. In addition, an ablation
study is conducted in the third example to comprehend the
superiority of the UCC function, where the developed method
is directly applied to approximate the primary HJI solution.

A. Two-Dimensional Linear System

Consider the following mass-spring-damper system:

ẋ = (A + 1A) x + B1w + B2u (45)

where the system matrices are given by

A =

[
0 1

−
k0

m
−

b0

m

]
, 1A =

[
0 0

−
k0

m
δk −

b0

m
δb

]

B1 = B2 =

[
0
1
m

]
and the state vector consists of the position x1 [m] and the
velocity x2 [m/s] as x = [x1, x2]

⊤. The value of the mass
m [kg] as well as the nominal values of the elastic coefficient
k0 [N/m] and damping coefficient b0 [kg/s] are

m = 1 kg, k0 = 3 N/m, b0 = 2 kg/s

and the perturbation ranges of these parameters are

δb =
b − b0

b0
∈

[
−

1
2
,

1
2

]
, δk =

k − k0

k0
∈

[
−

1
2
,

1
2

]
.

Therefore, the perturbation function

1 f (x) = E f (x)δ f (x) =

[
0 0

−
k0

m
−

b0

m

][
δk x1
δbx2

]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Tsinghua University. Downloaded on January 24,2024 at 01:45:08 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: ROBUST APPROXIMATE DYNAMIC PROGRAMMING FOR NONLINEAR SYSTEMS 9

where∥∥δ f (x)
∥∥ =

∥∥∥∥[δk x1
δbx2

]∥∥∥∥ ≤
1
2

∥x∥ = m f (x), M f =
1
2

I2.

In this example, tuning parameters for control and learning
were selected as follows:

Q =

[
1 0
0 20

]
, R = 0.1, γ = 0.5.

A polynomial-based critic network [10]

V̂ (x) = ω̂
⊤

c σc(x)

σc(x) =

[
x2

1 , x1x2, x2
2

]⊤
, ω̂c = [ω1, ω2, ω3]⊤

was employed to approximate the solution of the augmented
HJI equation, where σc(x) was the feature vector, and ω̂c was
the learned weight. The learning rates of the critic network
were chosen as αc = 0.01 and αs = 0.5. The Lyapunov
function was chosen as a quadratic polynomial function, that
is,

Js(x) = 0.5 x⊤x .

The initial state of its nominal system

ẋ = Ax + B1w +B2u (46)

was set to x0 = [0.7, −0.3]
⊤. The learned weight ω̂c was

initialized with zero vector, meaning that no initial stabilizing
control policy was required.

During the learning process, the number of historical states
Nb = 32. After learning for 10 s, the learned weight ω̂c con-
verged to [8.98808575, 1.74772668, 11.38678169]

⊤ as shown
in Fig. 4. Note that, for linear systems, the augmented HJI
equation degenerates into an algebraic Riccati equation

A⊤ P + P A + Q + M⊤

f M f

− P
(

B2 R−1 B⊤

2 −
1
γ2 B1 B⊤

1 − E f E⊤

f

)
P = 0 (47)

whose exact numerical solution can be obtained via MAT-
LAB, that is, ωc = [8.98808751, 1.74772708, 11.38678365]

⊤.
Denote the relative error of the weight of the critic network
as

e ≜

∥∥ω̂c − ωc
∥∥

2
∥ωc∥2

. (48)

It can be calculated that the relative error of critic weight is
below one-millionth, which shows that our method converges
to the optimal solution.

For further verifying the impact of experience replay on the
convergence speed and ultimate error bound of critic weight,
we chose different numbers of historical states in the algorithm
implementation. For each parameter, the relative error of critic
weight is depicted in Fig. 5. With the growth of historical
states employed in the proposed critic tuning method, the
convergence of critic weight is accelerating. On the other hand,
as the number of historical states increases from 8 to 32, the
ultimate error bound gradually decreases from 10−5 to around
10−7. The above experimental results validate the convergence
analysis presented in Theorem 3.

Fig. 4. Weight of the critic network for the linear uncertain system.

Fig. 5. Influence of the number of historical states on the convergence speed
and error bound of critic weight.

To illustrate the robust performance of the raised method
against model uncertainties, sinusoidal disturbance and white
noise disturbance were applied to the original uncertain sys-
tem (45). The actual disturbance attenuation level γ̂ was
calculated during the simulation as

γ̂ ≜

√√√√ ∫ T
0 ∥z∥2dt∫ T
0 ∥w∥

2dt
∀t ∈ (0, T ) (49)

which represented the robustness of the control method against
external disturbances. Comparison methods include as follows.

1) LQR: Static controller based on the linear quadratic
regulator.

2) LMI: Robust H∞ synthesis method solved by linear
matrix inequalities (LMIs) with the same performance
output and preset attenuation level [35].

3) OLA: Online approximator-based tuning method derived
from two-player zero-sum game [21].

4) RADP: Robust approximate dynamic programming pro-
posed in this work.

Simulation results under different parameter perturbations
are shown in Fig. 6, where the raincloud plot is employed
to provide an intuitive form of data visualization. In essence,
it combines scatter points, violin plots, and boxplots to provide
an overview of raw data, probability distribution, and statistical
inference by different quantiles and confidence intervals. Each
method reports a total of 81 different sets of parameters,
which are uniformly selected from the parameter perturbation
space. The vertical axis is the convergent actual disturbance
attenuation level γ̂, that is, 50 s for sinusoidal disturbance and
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Fig. 6. Simulation comparison results of the first example. (a) Sinusoidal
disturbance. (b) White noise disturbance.

250 s for white-noise disturbance. The range of the confidence
interval for different control methods reflects the degree to
which the disturbance attenuation performance is affected
by model error, that is, robust performance. Simulations
of different disturbances demonstrate that the raised RADP
method exhibits the lowest disturbance attenuation level and
its attenuation performance is least affected by model error.
As shown in Fig. 6(b), the actual attenuation levels under white
noise disturbance for RADP and LMI are similar. Thus, it can
be considered that the robust performance of the proposed
method is comparable to the traditional robust H∞ synthesis
method. Moreover, the compared OLA method approximately
solves the original HJI equation. The comparison results show
the advantages of the proposed method and UCC function.

B. Two-Dimensional Nonlinear System

Consider the nonlinear system mentioned in [30]

ẋ =

[
−x1 + x2

−
x1+x2

2 +
x2(cos2x1+2)2

2 −
x2(sin4x1+2)2

γ2

]

+

[
δ1x2sinx1
δ2x1cosx2

]
+

[
0

cos2x1 + 2

]
u +

[
0

sin4x1 + 2

]
w

(50)

where x = [x1, x2]
⊤. The perturbation function

1 f (x) = E f (x)δ f (x) = I2

[
δ1x2sinx1
δ2x1cosx2

]
where δ1 and δ2 are uncertain parameters with

δ1 ∈ [−1, 1] , δ2 ∈ [−1, 1]∥∥δ f (x)
∥∥ =

∥∥∥∥[δ1x2sinx1
δ2x1cosx2

]∥∥∥∥ ≤

∥∥∥∥[x2sinx1
x1cosx2

]∥∥∥∥ = m f (x).

In this nonlinear example, tuning parameters for control and
learning were selected as follows:

Q = 2I2, R = 2, γ = 2.

A quadratic polynomial was employed in the critic network

V̂ (x) = ω̂
⊤

c σc(x)

σc(x) =

[
x2

1 , x1x2, x2
2

]⊤
, ω̂c = [ω1, ω2, ω3]⊤

where σc(x) was the feature vector, and ω̂c was the learned
weight. The learning rates of the critic network were chosen

Fig. 7. Weight of the critic network for the second example.

Fig. 8. Simulation comparison results of the second example. (a) Sinusoidal
disturbance. (b) White-noise disturbance.

as αc = 0.003 and αs = 0.03. The initial state was set to x0 =

[0.3, 0.3]
⊤. Note that the primary HJI equation of the nominal

system with the utility function (11) could be solved with the
help of converse optimal control method [36], whose solution
[1, 0, 2]

⊤ was employed to initialize the learned weight ω̂c
to speed up the training progress. The number of historical
states Nb = 64. After learning for 15 s, the learned weight ω̂c
converged to [0.5108, 0.8059, 3.2485]

⊤ as shown in Fig. 7.
To compare the effects of other feature vectors, we applied

a fourth-degree (quartic) polynomial function to approximate
the critic network, that is,

V̂ (x) = ω̂
⊤

c σc(x), ω̂c = [ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8]⊤

σc(x) =

[
x2

1 , x1x2, x2
2 , x4

1 , x3
1 x2, x2

1 x2
2 , x1x3

2 , x4
2

]⊤
.

The other implementation details remained unchanged. After
learning for 15 s, the learned weight ω̂c is converged to

[0.5235, 0.7986, 3.2411, −0.0999, 0.0139,

0.0681, 0.1051, 0.1318]⊤.

To verify the robust performance of the raised method,
sinusoidal and white-noise disturbances were applied to the
nonlinear uncertain system (50). Repeated experiments were
carried out for each method, where 81 different sets of
uncertain parameters were sampled uniformly from the pertur-
bation space. The OLA method, which approximated the HJI
equation of the nominal system with the same performance
output and preset attenuation level, was utilized for the com-
parison. The actual disturbance attenuation level γ̂ in (49) was
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exploited to characterize the robust performance of different
controllers. Simulation results are shown in Fig. 8. It is evident
that the proposed method enjoys a lower level of disturbance
attenuation and is less affected by model error. Therefore, the
robust performance of the controller improved by the UCC
function (24) is illustrated. Additionally, the performance of
the controller obtained by a quartic polynomial is similar to
that obtained by a quadratic polynomial. This indicates that
a relatively simple feature vector can achieve the success of
the method, while a complex feature vector is not a necessary
condition for the algorithm to achieve better results.

C. Three-Dimensional Nonlinear System

Consider the nonlinear system mentioned in [28] and [30]

ẋ =

 −x1 + x2
0.1x1 − x2 − x1x3

x1x2 − x3

+

δx1sinx2cosx3
0
0


+

0
1
0

 u +

0
1
0

w (51)

where x = [x1, x2, x3]
⊤, δ ∈ [−1, 1] is an indeterminate

parameter in the perturbation function

1 f (x) = E f (x)δ f (x) =

1
0
0

 δx1sinx2cosx3

where∥∥δ f (x)
∥∥ = ∥δx1sinx2cosx3∥ ≤ ∥x1sinx2cosx3∥ = m f (x).

In this example, tuning parameters for control and learning
were selected as follows:

Q = 8I3, R = 5, γ = 5.

The critic network was approximated by

V̂ (x) = ω̂
⊤

c σc(x)

σc(x) =

[
x2

1 , x2
2 , x2

3 , x1x2, x1x3, x2x3

]⊤
ω̂c = [ω1, ω2, ω3, ω4, ω5, ω6]⊤

where σc(x) was the feature vector, and ω̂c was the learned
weight. The learning rates of the critic network were cho-
sen as αc = 0.03 and αs = 0.2. The initial state
was set to x0 = [2, 2, −1]

⊤, and the learned weight ω̂c
was initialized with zero vector. The number of histori-
cal states Nb = 64. As shown in Fig. 9, after learning
for 15 s, the learned weight ω̂c eventually converged to
[4.2239, 5.0494, −0.3062, 5.4908, −2.0132, 5.5768]

⊤.
To compare robust performance, sinusoidal and white-noise

disturbances were applied to the original uncertain system (51)
under 21 sets of uniformly sampled parameters. Comparison
methods included the OLA algorithm, which incorporated the
stabilizing term and solved the original HJI equation without
the UCC function. Besides, the developed critic tuning method
considering both stabilizing term and experience replay was
also applied to the primary HJI equation without the UCC
function. The actual disturbance attenuation level γ̂ in (49)

Fig. 9. Weight of the critic network for the third example.

Fig. 10. Simulation comparison results of the third example. (a) Sinusoidal
disturbance. (b) White-noise disturbance.

was used to characterize the robust performance of different
controllers. Simulation results are shown in Fig. 10. It can be
seen that even if the proposed RADP method utilizes historical
data for learning, without considering the UCC function, it can
only achieve robust performance similar to the OLA algorithm
under different types of disturbance. This ablation study rules
out the possibility of improving robust performance through
the experience replay technique. On the other hand, the
completed RADP method with the UCC function has a lower
disturbance attenuation level and is less affected by model
error under different disturbances. The results demonstrate
the effectiveness of the proposed RADP approach and the
superiority of the introduced UCC function.

VI. CONCLUSION

A novel ADP-based algorithm, which relaxed the require-
ments of the PE condition and initial stabilizing controller, was
put forward to solve robust performance problems of uncertain
nonlinear systems. The robust performance of the obtained
robust controller was achieved by constructing an augmented
Hamilton–Jacobi–Isaacs (HJI) equation of the corresponding
nominal system with a UCC function. The weights of the esti-
mated critic network were tuned to approximate the solution
of the augmented HJI equation, with both convergence and
stability guarantees. Three numerical examples were presented
to verify the efficacy and robustness of the proposed RADP
algorithm.
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APPENDIX

A. Proof of Theorem 2

Proof: First, choose a Lyapunov function candidate as

L (ω̃c, x) ≜
1

2αc
ω̃⊤

c ω̃c +
αs

αc
Js(x). (A.1)

When applying our algorithm, the nominal system operates
under the drive of the estimated optimal controller û(x) and
worst-case disturbance ŵ(x). The time derivative along the
dynamics of the closed-loop system (35) and the weight
estimation error (43) is

L̇ (ω̃c, x) =
1
αc

ω̃⊤

c
˙̃ωc +

αs

αc
(∇ Js(x))⊤ ẋ

=
αs

αc
(∇ Js(x))⊤ ẋ

− ω̃⊤

c

(
−

1
4
ω̃⊤

c ξ(x)ω̃c +
1
2
ω̃⊤

c ξ(x)ωc

+ ω̃⊤

c ∇σc(x) f (x) + eH

)
×

(
−

1
2
ξ(x)ω̃c +

1
2
ξ(x)ωc + ∇σc(x) f (x)

)
+

αs

2αc
5(x, û, ŵ)ω̃⊤

c ∇σc(x)M(x)∇ Js(x).

Then, the time derivative of (1/2αc)ω̃
⊤

c ω̃c will transit from
the trajectory (35) of the estimated policies to that (29)
of the optimal policies. To distinguish different trials, the
trajectory (29) under the optimal policies is denoted as ẋ∗. For
the convenience of writing, some matrices will be introduced:

ϑ(x) ≜ ∇σc(x)g(x)R−1g⊤(x) (∇σc(x))⊤

κ(x) ≜
1
γ2 ∇σc(x)k(x)k⊤(x) (∇σc(x))⊤

ρ(x) ≜ ∇σc(x)E f (x)E⊤

f (x) (∇σc(x))⊤

ϑσϵ(x) ≜ ∇σc(x)g(x)R−1g⊤(x) (∇ϵc(x))⊤

κσϵ(x) ≜
1
γ2 ∇σc(x)k(x)k⊤(x) (∇ϵc(x))⊤ . (A.2)

According to the abbreviated matrix defined in (30), we have

ξ(x) = κ(x) − ϑ(x) + ρ(x).

For the symmetric matrices ϑ(x), κ(x), ρ(x), and ξ(x) men-
tioned above, the lower- and upper-bound operations for their
norms are assumed to be λϑ > 0, λ̄ϑ > 0, λκ > 0, λ̄κ > 0,
λρ > 0, λ̄ρ > 0, λξ > 0, and λ̄ξ > 0, respectively. Note that

ω̃⊤

c ∇σc(x)ẋ = ω̃⊤

c ∇σc(x) f (x) +
1
2
ω̃⊤

c ϑ(x)ω̃c

−
1
2
ω̃⊤

c κ(x)ω̃c −
1
2
ω̃⊤

c ϑ(x)ωc +
1
2
ω̃⊤

c κ(x)ωc

ω̃⊤

c ∇σc(x)ẋ∗
= ω̃⊤

c ∇σc(x)ẋ −
1
2
ω̃⊤

c ϑ(x)ω̃c

+
1
2
ω̃⊤

c κ(x)ω̃c +
1
2
ω̃⊤

c ∇σc(x)M(x)∇ϵc(x).

By replacing ω̃⊤

c ∇σc(x)ẋ with ω̃⊤

c ∇σc(x)ẋ∗ in the first
term (1/αc)ω̃

⊤

c
˙̃ωc, the derivative of the Lyapunov candidate

Fig. 11. Stability and convergence analysis.

becomes

L̇ (ω̃c, x) = −

(
ω̃⊤

c ∇σc(x)ẋ∗
−

1
4
ω̃⊤

c ξ(x)ω̃c +
1
2
ω̃⊤

c ρ(x)ωc

−
1
2
ω̃⊤

c ∇σc(x)M(x)∇ϵc(x) + eH

)
×

(
ω̃⊤

c ∇σc(x)ẋ∗
−

1
2
ω̃⊤

c ξ(x)ω̃c +
1
2
ω̃⊤

c ρ(x)ωc

−
1
2
ω̃⊤

c ∇σc(x)M(x)∇ϵc(x)

)
+

αs

2αc
5(x, û, ŵ)ω̃⊤

c ∇σc(x)M(x)∇ Js(x)

+
αs

αc
(∇ Js(x))⊤ ẋ . (A.3)

Next, in accordance with the bounded conditions 1)–4)
in Assumption 2, expanding all terms of the above formula
and performing basic mathematical operations generates the
following inequalities with respect to ω̃c and ∇ Js(x):

L̇ ≤ −
1

16

(
ω̃⊤

c ξ(x)ω̃c

)2
−

1
8

(
ω̃⊤

c ρ(x)ωc

)2

+
3
8

(
ω̃⊤

c κ(x)ω̃c

)(
ω̃⊤

c ρ(x)ωc

)
−

3
8

(
ω̃⊤

c ϑ(x)ω̃c

)(
ω̃⊤

c ρ(x)ωc

)
+

3
8

(
ω̃⊤

c ρ(x)ω̃c

)(
ω̃⊤

c ρ(x)ωc

)
+

(
3
4
ω̃⊤

c (κ(x) − ϑ(x) + ρ(x)) ω̃c − ω̃⊤

c ρ(x)ωc

)
×

(
ω̃⊤

c ∇σc ẋ∗

)
+

(
3
8
ω̃⊤

c (κ(x) − ϑ(x) + ρ(x)) ω̃c −
1
2
ω̃⊤

c ρ(x)ωc

)
(ω̃⊤

c ϑσϵ(x))

−

(
3
8
ω̃⊤

c (κ(x) − ϑ(x) + ρ(x)) ω̃c −
1
2
ω̃⊤

c ρ(x)ωc

)
×

(
ω̃⊤

c κσϵ(x)
)

+
9
8

(
ω̃⊤

c ϑσϵ(x)
)2

+
9
8

(
ω̃⊤

c κσϵ(x)
)2

+
αs

αc
(∇ Js(x))⊤ ẋ

+ 3e2
H (x) +

αs

2αc
5(x, û, ŵ)ω̃⊤

c ∇σc(x)M(x)∇ Js(x)

≤ −
1

16

(
ω̃⊤

c ξ(x)ω̃c

)2
−

1
8

(
ω̃⊤

c ρ(x)ωc

)2
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+

(
3

16
η2

1 +
3

8η2
4

+
3

16
η2

8 +
3

16γ2 η2
12

)(
ω̃⊤

c κ(x)ω̃c

)2

+

(
3

16
η2

2 +
3

8η2
5

+
3

16
η2

9 +
3

16γ2 η2
13

)(
ω̃⊤

c ϑ(x)ω̃c

)2

+

(
3

16
η2

3 +
3

8η2
6

+
3

16
η2

10 +
3

16γ2 η2
14

)(
ω̃⊤

c ρ(x)ω̃c

)2

+

(
3

16η2
1

+
3

16η2
2

+
3

16η2
3

+
1

2η2
7

+
η2

11
4

+
η2

15
4γ2

)
×

(
ω̃⊤

c ρ(x)ωc

)2

+

(
3
8
η2

4 +
3
8
η2

5 +
3
8
η2

6 +
1
2
η2

7

)(
ω̃⊤

c ∇σc(x)ẋ∗

)2

+

(
9
8

+
3

16η2
8

+
3

16η2
9

+
3

16η2
10

+
1

4η2
11

)(
ω̃⊤

c ϑσϵ(x)
)2

+

(
9
8

+
3γ2

16η2
12

+
3γ2

16η2
13

+
3γ2

16η2
14

+
γ2

4η2
15

)
×

(
ω̃⊤

c κσϵ(x)
)2

+ 3e2
H (x) +

αs

αc
(∇ Js(x))⊤ ẋ

+
αs

2αc
5(x, û, ŵ)ω̃⊤

c ∇σc(x)M(x)∇ Js(x)

≤ −λ1 ∥ω̃c∥
4
+ λ2 ∥ω̃c∥

2
+ λ2

3 +
αs

αc
(∇ Js(x))⊤ ẋ

+
αs

2αc
5(x, û, ŵ) (∇ Js(x))⊤ M(x) (∇σc(x))⊤ ω̃c

where

λ1 ≜
1
16

λ2
ξ

−

(
3

16
η2

1 +
3

8η2
4

+
3

16
η2

8 +
3

16γ2 η2
12

)
λ̄

2
κ

−

(
3
16

η2
2 +

3
8η2

5
+

3
16

η2
9 +

3
16γ2 η2

13

)
λ̄

2
ϑ

−

(
3

16
η2

3 +
3

8η2
6

+
3

16
η2

10 +
3

16γ2 η2
14

)
λ̄

2
ρ (A.4)

λ2 ≜ −
1
8
λ2

ρ
λ2

ω +

(
3
8
η2

4 +
3
8
η2

5 +
3
8
η2

6 +
1
2
η2

7

)
λ2

σ x

+

(
3

16η2
1

+
3

16η2
2

+
3

16η2
3

+
1

2η2
7

+
η2

11
4

+
η2

15
4γ2

)

× λ̄
2
ρλ2

ω +

(
9
8

+
3

16η2
8

+
3

16η2
9

+
3

16η2
10

+
1

4η2
11

)
× λ2

σ λ4
g

∥∥∥R−1
∥∥∥2

λ2
ϵ

+
1
γ2

(
9

8γ2 +
3

16η2
12

+
3

16η2
13

+
3

16η2
14

+
1

4η2
15

)
× λ2

σ λ4
kλ

2
ϵ

λ3 ≜
√

3λe. (A.5)

For the meaning of symbols such as λg , λk , λω, λσ , λϵ , λe,
and λσ x , refer to bounded assumptions given in Assumption 2.

Note that λ1, λ2, and λ3 are all positive that can be ensured
by choosing constants {ηi }

15
i=1 appropriately.

After that, the two cases of the unstability indicator function
will be discussed separately. For the first case, 5(x, û, ŵ) =

1 indicates that

L̇ (ω̃c, x) ≤ −λ1 ∥ω̃c∥
4
+ λ2 ∥ω̃c∥

2
+ λ2

3

+
αs

αc
(∇ Js(x))⊤

(
f (x) +

1
2

M(x) (∇σc(x))⊤ ωc

)
≤ −λ1 ∥ω̃c∥

4
+ λ2 ∥ω̃c∥

2
+ λ2

3

−
αs

αc
λmin (8) ∥∇ Js(x)∥2

+
αs

2αc

(
λ2

g

∥∥∥R−1
∥∥∥+

1
γ2 λ2

k

)
λϵ ∥∇ Js(x)∥ .

Completing the squares about ∥ω̃c∥
2 and ∥∇ Js(x)∥ yields

L̇ (ω̃c, x) ≤ −λ1

(
∥ω̃c∥

2
−

λ2

2λ1

)2

+ λ4

−λ5

∥∇ Js(x)∥ −

(
λ2

g
∥∥R−1

∥∥+
λ2

k
γ2

)
λϵ

4λmin (8)


2

where

λ4 ≜ λ2
3 +

λ2
2

4λ1
+

αsλ
2
ϵ

16αcλmin (8)

(
λ2

g

∥∥∥R−1
∥∥∥+

λ2
k

γ2

)2

λ5 ≜
αs

αc
λmin (8) . (A.6)

Thus, if the following inequality

∥ω̃c∥ ≥

√√√√ λ2

2λ1
+

√
λ4

λ1
≜ λ′

ω̃c
(A.7)

or

∥∇ Js(x)∥ ≥

(
γ2λ2

g
∥∥R−1

∥∥+ λ2
k

)
λϵ

4γ2λmin (8)
+

√
αcλ4

αsλmin (8)
≜ λ′

x

(A.8)

holds, we can obtain that L̇(ω̃c, x) < 0.
For the other case, 5(x, û, ŵ) = 0 means that

∇ Js(x)⊤( f (x)+g(x)û+k(x)ŵ) < 0. Since there is a positive
number λ6 such that ∇ Js(x)⊤( f (x) + g(x)û + k(x)ŵ) ≤

−λ6∥∇ Js(x)∥, the derivative of the Lyapunov candidate has

L̇ (ω̃c, x) ≤ −λ1 ∥ω̃c∥
4
+ λ2 ∥ω̃c∥

2
+ λ2

3 − λ6
αs

αc
∥∇ Js(x)∥

= −λ1

(
∥ω̃c∥

2
−

λ2

2λ1

)2

+
λ2

2
4λ1

+ λ2
3

− λ6
αs

αc
∥∇ Js(x)∥ .

Therefore, if the following inequality

∥ω̃c∥ ≥

√
λ2+

√
λ2

2+4λ1λ
2
3

2λ1
≜ λ′′

ω̃c
(A.9)
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or

∥∇ Js(x)∥ ≥
αc
(
λ2

2 + 4λ1λ
2
3
)

4αsλ1λ6
≜ λ′′

x (A.10)

holds, it is guaranteed that L̇(ω̃c, x) < 0.
In summary, if the inequality ∥ω̃c∥ ≥ max (λ′

ω̃c
, λ′′

ω̃c
) ≜ λω̃c

or ∥∇ Js(x)∥ ≥ max (λ′
x , λ

′′
x ) ≜ λx holds, one has L̇(ω̃c, x) <

0. As claimed by Assumption 1, Js(x) is radially unbounded.
The boundedness of ∥∇ Js(x)∥ implies the boundedness of
the state, that is, ∥x∥. The above inequalities guarantee that
L̇(ω̃c, x) < 0 outside a compact set as shown in Fig. 11.
According to the Lyapunov extension theorem, we can con-
clude that the weight estimation error ω̃c and the state x of the
closed-loop system with the estimated policies (34) are UUB
with ultimate bounds λω̃c and λx .
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